YU Xue, PEI Dan, FANG Jinggui. 2024: Optimization of grape chromosome preparation and rDNA distribution characteristics in 14 grape varieties. Journal of Southern Agriculture, 55(8): 2351-2359. DOI: 10.3969/j.issn.2095-1191.2024.08.014
Citation: YU Xue, PEI Dan, FANG Jinggui. 2024: Optimization of grape chromosome preparation and rDNA distribution characteristics in 14 grape varieties. Journal of Southern Agriculture, 55(8): 2351-2359. DOI: 10.3969/j.issn.2095-1191.2024.08.014

Optimization of grape chromosome preparation and rDNA distribution characteristics in 14 grape varieties

Funds: 

National Natural Science Foundation of China(32272647)

Shandong Key Research and Development(Agricultural Breeding Engineering)Project(2022LZGCQY1018)

More Information
  • Received Date: March 09, 2024
  • 【Objective】This study aimed to optimize grape chromosome preparation technique and analyze the rDNA distribution characteristics in 14 grape varieties,providing reference for grape chromosome identification,variation analysis,and analysis of cytogenetic background differentiation among grape varieties.【Method】The root tips of 14 grape varieties from hydroponically grown semi-lignified shoots were used as experimental materials. A control group treating root tips with an ice-water mixture for 24 h,followed by 1 MPa nitrous oxide(N2O)treatment for 30 min was set. The root tips were soaked in 0.2 μmol/L amiprophos-methyl solution(APM)for 2 h,and treated with 1 MPa N2O for different durations(0,30,and 60 min). Chromosome preparation conditions were screened,and the proportion of metaphase splitting phases in good shape under each treatment was calculated. The chromosome preparation effects of enzymatic digestion and dropping method and the flame-drying method were compared. The distribution characteristics of rDNA on chromosomes of 14 grape varieties were analyzed using dual-color fluorescence in situ hybridization(FISH) technique with 45S rDNA and 5S rDNA as probes.【Result】The proportion of metaphase splitting phases in good shape in grape root tip materials was only 32.22% in the control group. After FISH,background signals were easily generated and the signals were blurred. The highest proportion of metaphase splitting phases in good shape(80.00%)in chromosome slides was obtained by treating root tips with APM for 2 h and with 1 MPa N2O for 30 min. The chromosome concentration was appropriate,and the quality of FISH signals was good. The flame-drying method resulted in moderate cell dispersion and a high number of metaphase splitting phases. 45S rDNA and 5S rDNA signals were consistently linked on grape chromosomes. The number of 5S rDNA signals was correlated with the ploidy level,with 2,3 and 4 signals observed in diploid,triploid and tetraploid grapes respectively. The number of 45S rDNA signals was 4,6 and 7 in diploid,triploid and tetraploid grapes respectively,except for Hongxiangjiao grape,which had only 3 signals. The 5S rDNA signals were located on chromosome 17,while the 45S rDNA signals were located on chromosomes 17 and 15. Exceptions were observed in Italy grape and Bixiang seedless grape with two 45S rDNA signals unlinked to 5S rDNA signals located on chromosomes 15 and 16 in Italy grape,and one 45S rDNA signal linked to 5S rDNA on chromosome 15 and one 45S rDNA signal unlinked to 5S rDNA on chromosome 17 in Bixiang seedless grape.【Conclusion】The optimal method for preparing metaphase chromosomes of grape root tips is pretreatment with APM for 2 h,and 1 MPa N2O for 30 min,using the flamedrying method for slide preparation. The 45S rDNA and 5S rDNA are linked on grape chromosomes,with varying numbers in diploid,triploid,and tetraploid grapes. The 45S rDNA and 5S rDNA of 14 grape varieties exhibited an L-shape arrangement on the chromosomes,and the number of 5S rDNA loci is more stable than that of 45S rDNA loci.
  • 程梦豪,Miroslava Karafiátová,孙昊杰,Kateřina Holušová,Jaroslav Doležel,宋新颖,王海燕,王秀娥. 2022. 基于纤毛鹅观草特异的卫星重复序列开发寡核苷酸探针[J]. 南京农业大学学报,45(3):442-452.[Cheng M H,Karafiátová M,Sun H J,Holušová K,Doležel J,Song X Y,Wang H Y,Wang X E. 2022. Development of oligonucleotide probes specific to Roegneria ciliaris chromosomes based on satellite repeats[J]. Journal of Nanjing Agricultural University,45(3):442-452.]doi:10.7685/jnau.202107035.
    杜培. 2017. 小麦、百萨偃麦草和花生染色体荧光原位杂交寡核苷酸探针(套)开发与应用[D]. 南京:南京农业大学.[Du P. 2017. Development and application of Wheat,Thinopyrum Bessarabicum and Peanut oligonucleotide and multiplex probes for fluorescence in Situ hybridization[D]. Nanjing:Nanjing Agricultural University.]doi:10. 27244/d.cnki.gnjnu.2017.000137.
    郭瑞红,邱帅,刘光欣,高凯,魏建芬,席梦丽. 2021. 绣球染色体制片技术优化及 rDNA 物理定位[J]. 林业科学,57(11):59-67.[Guo R H,Qiu S,Liu G X,Gao K,Wei J F,Xi M L. 2021. Optimization of chromosome preparation and rDNA physical localization of Hydrangea macrophylla[J]. Scientia Silvae Sinicae,57(11):59-67.]doi:10.11707/j.1001-7488.20211106.
    韩亚慧,贺宇,张春芬,邓舒,肖蓉,曹秋芬. 2024.嘎啦苹果花药培养再生植株根尖染色体制片体系的建立[J/OL].分子植物育种. https://kns.cnki.net/kcms2/detail/46.1068.S.20230710.1911.005.htm.[Han Y H,He Y,Zhang C F,Deng S,Xiao R,Cao Q F. 2024. Establishment of chromosome production system for root tip of regenerated anther culture plantlets of Gala apple[J/OL]. Molecular Plant Breeding. https://kns. cnki. net/kcms2/detail/46.1068. S. 202 30710.1911.005.htm.]
    黄敏,周玲,黄婧,徐安莉,王平. 2017. 45S rDNA基因的不稳定性及其与转录的相关性[J]. 激光生物学报,26(2): 151-155.[Huang M,Zhou L,Huang J,Xu A L,Wang P. 2017. Instability of 45S rDNA gene and its correlation with transcription[J]. Acta Laser Biology Sinica,26(2): 151-155.]doi:10.3969/j.issn.1007-7146.2017.02.010.
    孔令娜,冯祎高,孙冰晓,张慧,刘晓雪,陈颖,张瑞奇. 2020.基于改进的多色荧光原位杂交技术的染色体分析[J].中国农学通报,36(12):97-103.[Kong L N,Feng Y G,Sun B X,Zhang H,Liu X X,Chen Y,Zhang R Q. 2020. Chromosome analysis based on an improved multiplex fluorescence in situ hybridization(M-FISH)[J]. Chinese Agricultural Science Bulletin,36(12):97-103.]
    刘昱希,韩兰英,李梦雪,赵勤政,陈劲枫,娄群峰. 2020. 葫芦科植物幼嫩子房壁制片技术的优化及其染色体倍性鉴定[J]. 西北植物学报,40(5):882-887.[Liu Y X,Han L Y,Li M X,Zhao Q Z,Chen J F,Lou Q F. 2020. Optimization of chromosome preparation method using young ovary wall of Cucurbitaceae plants and pioidy identification[J]. Acta Botanica Boreali-Occidentalia Sinica,40(5): 882-887.]doi:10.7606/j.issn.1000-4025.2020.05.0882.
    马龙,徐美隆,范培格,乔改霞,刘玉娟,王荣,谢军,马东海. 2023. 干旱胁迫下砧木‘110R’对黑比诺'葡萄抗旱性的影响[J]. 中外葡萄与葡萄酒,(6):18-25.[Ma L,Xu M L,Fan P G,Qiao G X,Liu Y J,Wang R,Xie J,Ma D H. 2023. Effects of rootstock‘110R’on drought resistance of'Pinot Noir' grapevine under drought stress[J]. SinoOverseas Grapevine & Wine,(6):18-25.]doi:10.13414/j.cnki.zwpp.2023.06.003.
    裴丹. 2023.葡萄染色体荧光原位杂交寡核苷酸探针开发与利用[D]. 南京:南京农业大学 .[Pei D. 2023. Development and application of oligonucleotide probes for fluoresence in situ hybridization in Vitis chromosomes[D]. Nanjing:Nanjing Agricultural University.]
    肖苏芯,黄依然,高丽,贾桂霞,高雪. 2021. 蜀葵根尖染色体制片技术优化和核型分析[J]. 分子植物育种,19(17): 5800-5807.[Xiao S X,Huang Y R,Gao L,Jia G X,Gao X. 2021. Optimization of chromosome tableting technology and karyotype analysis of Althaea rosea root tips[J].Molecular Plant Breeding,19(17):5800-5807.]doi:10. 13271/j.mpb.019.005800.
    徐川梅,王子晗,谢峰,金旭胤,吴心妍,陈荣,黄坚钦. 2022. 12个竹种的45S rDNA和5S rDNA分布特性比较[J].林业科学,58(7):93-102.[Xu C M,Wang Z H,Xie F,Jin X Y,Wu X Y,Chen R,Huang J Q. 2022. Comparison of 45S rDNA and 5S rDNA distribution characteristics of 12 bamboo species[J]. Scientia Silvae Sinicae,58(7):93-102.]doi:10.11707/j.1001-7488.20220710.
    姚乐沙. 2021. 玉米及亲缘物种寡核苷酸探针开发与应用[D]. 南京:南京农业大学.[Yao L S. 2021. Development and application of oligonucleotide probes for maize and related species[D]. Nanjing:Nanjing Agricultural University.]doi:10.27244/d.cnki.gnjnu.2021.001356.
    喻雪莲,李兴锋,张丽霞 . 2024. 茶树染色体制片技术优化[J/OL]. 分子植物育种 . https://link.cnki.net/urlid/46" target="_blank"> https://link.cnki.net/urlid/46. 1068.s.20231218.1911.024.[Yu X L,Li X F,Zhang L X. 2024. Technical optimization of chromosome preparation in Camellia sinensis[J/OL]. Molecular Plant Breeding. https://link.cnki.net/urlid/46" target="_blank"> https://link.cnki.net/urlid/46. 1068.s.20231218.1911.024].
    Ding X L,Xu T L,Wang J,Luo L,Yu C,Dong G M,Pan H T,Zhang Q X. 2016. Distribution of 45S rDNA in modern rose cultivars (Rosa hybrida),Rosa rugosa,and their interspecific hybrids revealed by fluorescence in situ hybridization[J]. Cytogenetic and Genome Research,149(3):226-235.doi:10.1159/000448063.
    Evtushenko E V,Lipikhina Y A,Stepochkin P I,Vershinin A V. 2019. Cytogenetic and molecular characteristics of rye genome in octoploid triticale (×Triticosecale Wittmack)[J]. Comp Cytogenet,13(4):423-434. doi:10.3897/CompCytogen.v13i4.39576. eCollection 2019.
    Falistocco E,Passeri V,Marconi G. 2007. Investigations of 5S rDNA of Vitis vinifera L.:Sequence analysis and physical mapping[J]. Genome,50(10):927-938. doi:10.1139/g07-070.
    Garcia S,Kovařík A,Leitch A R,Garnatje T. 2017. Cytogenetic features of rRNA genes across land plants:Analysis of the plant rDNA database[J]. The Plant Journal,89(5):1020-1030. doi:10.1111/tpj.13442.
    He J,Lin S S,Yu Z Y,Song A P,Guan Z Y,Fang W M,Chen S M,Zhang F,Jiang J,Chen F D,Wang H B. 2021. Identification of 5S and 45S rDNA sites in Chrysanthemum species by using oligonucleotide fluorescence in situ hybridization(Oligo-FISH)[J]. Molecular Biology Reports,48(1):21-31. doi:10.1007/s11033-020-06102-1.
    Houel C,Bounon R,Chaïb J,Guichard C,Peros J P,Bacilieri R,Dereeper A,Canaguier A,Lacombe T,N'Diaye A,Le Paslier M C,Vernerey M S,Coriton O,Brunel D,This P,Torregrosa L,Adam-Blondon A F. 2010. Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions[J]. BMC Plant Biology,10:284. doi:10.1186/1471-2229-10-284.
    Jiang J J. 2019. Fluorescence in situ hybridization in plants:Recent developments and future applications[J]. Chromosome Reseach,27(3):153-165. doi:10.1007/s10577-019-09607-z.
    Lan H,Chen C L,Miao Y,Yu C X,Guo W W,Xu Q,Deng X X. 2016. Fragile sites of‘Valencia’sweet orange(Citrus sinensis)chromosomes are related with active 45s rDNA [J]. PLoS One,11(3):e0151512. doi:10.1371/journal.pone.0151512.
    Lin P,Hu X,Xue L,Li X,Wang P,Zhao X,Zhang M,Deng Z,Yu F. 2022. Identification of sugarcane S. spontaneum(Poaceae) germplasm:Evidence from rDNA-ITS and rDNA locus analyses[J]. Agronomy,12(12):3167. doi: 10.3390/agronomy12123167.
    Liu J R,Lin X Y,Wang X J,Feng L Q,Zhu S X,Tian R M,Fang J P,Tao A F,Fang P P,Qi J M,Zhang L W,Huang Y J,Xu J T. 2024. Genomic and cytogenetic analyses reveal satellite repeat signature in allotetraploid okra(Abelmoschus esculentus)[J]. BMC Plant Biology,24(1):71. doi: 10.1186/s12870-024-04739-9.
    Lou Q F,Zhang Y X,He Y H,Li J,Jia L,Cheng C Y,Guan W,Yang S Q,Chen J F. 2014. Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis[J]. The Plant Journal,78(1):169-79. doi:10.1111/tpj.12453.
    Mehrotra S,Goyal V. 2014. Repetitive sequences in plant nuclear DNA:Types,distribution,evolution and function[J]. Genomics Proteomics Bioinformatics,12(4):164-171.doi:10.1016/j.gpb.2014.07.003.
    Mitrenina E Y,Alekseeva S S,Badaeva E D,Peruzzi L,Artemov G N,Krivenko D A,Pinzani L,Aytaç Z,Çeçen Ö,Baasanmunkh S,Choi H J,Mesterházy A,Tashev A N,Bancheva S,Lian L,Xiang K L,Wang W,Erst A S. 2023.
    Karyotypes and physical mapping of ribosomal DNA with oligo-probes in Eranthis sect. Eranthis(Ranunculaceae)[J]. Plants,13(1):47. doi:10.3390/plants13010047.
    Olanj N,Garnatje T,Sonboli A,Vallès J,Garcia S. 2015. The striking and unexpected cytogenetic diversity of genus Tanacetum L.(Asteracea):A cytometric and fluorescent in situ hybridisation study of Iranian taxa[J]. BMC Plant Biology,15:174. doi:10.1186/s12870-015-0564-8.
    Pedrosa-Harand A,de Almeida C C S,Mosiolek M,Blair M W,Schweizer D,Guerra M. 2006. Extensive ribosomal DNA amplification during Andean common bean(Phaseolus vulgaris L.)evolution[J]. Theoretical and Applied Genetics, 112(5):924-933.doi:10.1007/s00122-005-0196-8.
    Pei D,Yu X,Fu W H,Ma X H,Fang J G. 2024. The evolution and formation of centromeric repeats analysis in Vitis vinifera[J]. Planta,259(5):99. doi:10.1007/s00425-024-04374-6.
    Pereira H S,Barão A,Delgado M,Morais-Cecílio L,Viegas W. 2005. Genomic analysis of Grapevine Retrotransposon 1(Gret 1)in Vitis vinifera[J]. Theoretical and Applied Genetics,111(5):871-878.doi:10.1007/s00122-005-0009-0.
    Pereira H S,Delgado M,Avó A P,Barão A,Serrano I,Viegas W. 2014. Pollen grain development is highly sensitive to temperature stress in Vitis vinifera[J]. Australian Jouranl of Grape and Wine Research,20:474-484. doi:10.1111/ajgw.12105.
    Rachma I,Dwiranti A,Salamah A. 2023. Optimization of Hibiscus rosa-sinensis L. chromosome pretreatment[C]. AIP Conference Proceedings,020149. doi:10.1063/1.5064146.
    Raskina O,Barber J C,Nevo E,Belyayev A. 2008. Repetitive DNA and chromosomal rearraraskina:Speciation-related events in plant genomes[J]. Cytogenetic and Genome Research,120(3-4):351-357. doi:10.1159/000121084.
    Tomlekova N,Idziak-Helmcke D,Franke P,Rojek-Jelonek M,Kwasniewska J. 2024. Phaseolus vulgaris mutants reveal variation in the nuclear genome[J]. Front in Plant Science, 14:1308830. doi:10.3389/fpls.2023.1308830.
    Tsang E,Carr A M. 2008. Replication fork arrest,recombination and the maintenance of ribosomal DNA stability[J].DNA Repair,7(10):1613-1623. doi:10.1016/j. dnarep. 2008.06.010.
    Zhang Z T,Yang S Q,Li Z A,Zhang Y X,Wang Y Z,Cheng C Y,Li J,Chen J F,Lou Q F. 2016. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis [J]. Genome,59(7):449-457. doi:10.1139/gen-2015-0207.

Catalog

    Article Metrics

    Article views (154) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return