留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可可毛色二孢AM2As全基因组分泌蛋白预测及功能分析

禄锦鹏 秦春秀 李潇 陈代朋 王佳楠 李志刚 刘文波

禄锦鹏, 秦春秀, 李潇, 陈代朋, 王佳楠, 李志刚, 刘文波. 可可毛色二孢AM2As全基因组分泌蛋白预测及功能分析[J]. 南方农业学报, 2023, 54(11): 3136-3155. doi: 10.3969/j.issn.2095-1191.2023.11.002
引用本文: 禄锦鹏, 秦春秀, 李潇, 陈代朋, 王佳楠, 李志刚, 刘文波. 可可毛色二孢AM2As全基因组分泌蛋白预测及功能分析[J]. 南方农业学报, 2023, 54(11): 3136-3155. doi: 10.3969/j.issn.2095-1191.2023.11.002
LU Jin-peng, QIN Chun-xiu, LI Xiao, CHEN Dai-peng, WANG Jia-nan, LI Zhi-gang, LIU Wen-bo. Prediction and functional analysis of AM2As whole genome secretory proteins of Lasiodiplodia theobromae[J]. Journal of Southern Agriculture, 2023, 54(11): 3136-3155. doi: 10.3969/j.issn.2095-1191.2023.11.002
Citation: LU Jin-peng, QIN Chun-xiu, LI Xiao, CHEN Dai-peng, WANG Jia-nan, LI Zhi-gang, LIU Wen-bo. Prediction and functional analysis of AM2As whole genome secretory proteins of Lasiodiplodia theobromae[J]. Journal of Southern Agriculture, 2023, 54(11): 3136-3155. doi: 10.3969/j.issn.2095-1191.2023.11.002

可可毛色二孢AM2As全基因组分泌蛋白预测及功能分析

doi: 10.3969/j.issn.2095-1191.2023.11.002
基金项目: 

海南省自然科学基金项目(321RC470,322MS025);海南省院士创新平台科研专项(YSPTZX202018)

详细信息
    作者简介:

    禄锦鹏(2003-),https://orcid.org/0009-0001-4801-9486,研究方向为植物病原菌生物信息学,E-mail:2388564347@qq.com

    通讯作者:

    刘文波(1978-),https://orcid.org/0000-0003-3635-2350,副教授,主要从事热带作物病理学研究工作,E-mail:saucher@hainanu.edu.cn

  • 中图分类号: S432.44

Prediction and functional analysis of AM2As whole genome secretory proteins of Lasiodiplodia theobromae

Funds: 

Hainan Natural Science Foundation(321RC470,322MS025)

  • 摘要: 【目的】对可可毛色二孢AM2As全基因组编码分泌蛋白进行预测及功能分析,为挖掘该病原菌关键致病基因及可可抗病基因提供理论参考。【方法】根据NCBI数据库已公布的可可毛色二孢全基因组序列,利用SignalP 5.0、ProtComp 9.0、TMHMM 2.0、GPI-SOM、LiPop 1.0等生物信息学软件对其分泌蛋白序列进行预测筛选及功能分析,并依据分泌蛋白序列的相似性,应用PHI1 COG和eggNOG-mapper 5.0数据库进行功能注释分析,再利用MEGA X、GSDS 2.0、TBtools 1.09等软件对分泌蛋白组进行系统发育进化及其基因结构和启动子顺式作用元件分析。【结果】可可毛色二孢全基因组共编码13054个蛋白,有638个蛋白具有潜在典型分泌蛋白特征,占总数4.89%。638个分泌蛋白的氨基酸数量为55~1777个,其中以100~400个氨基酸居多,占分泌蛋白序列总数的53.76%,说明大多数分泌蛋白属于小型蛋白。20种氨基酸数量和占比在638个分泌蛋白中存在明显差异,Ala占比最高,其余氨基酸种类占比均未超过10.00%。638个分泌蛋白的信号肽氨基酸数量为15~38个,其中有409个分泌蛋白的信号肽氨基酸数量为17~20个;以非极性氨基酸Ala占比最高,而有带电侧链的Asp和Glu占比最低。信号肽-3和-1位上氨基酸相对保守,切割位点属于A-X-A类型,可被Sp I型信号肽酶识别并切割。将638个分泌蛋白分为七大类群,不同类群成员在蛋白结构、功能和保守基序上呈明显差异。400个分泌蛋白获得功能注释,主要涉及碳水化合物运输和代谢过程、蛋白翻译后修饰及氨基酸代谢和运输过程。分泌蛋白组中共预测出221个CAZymes和244个效应蛋白,其中48个效应蛋白可通过PHI数据库得到功能注释。【结论】可可毛色二孢分泌蛋白功能主要集中在碳水化合物的运输和代谢、翻译后修饰及氨基酸代谢和运输等过程,还有其他未知功能和致病功能,初步推断可可毛色二孢AM2As在侵染致病过程中,受脱落酸反应、生长素反应、低温厌氧反应和光反应等顺式作用元件调控,通过分泌大量碳水化合物降解、代谢、转运等相关蛋白,建立寄生关系,再利用代谢产物帮助自身加速侵染,达到致病的作用。
  • 葛广玉,迟长凤,王振原,刘志鸿,王岩,陈夕,孙秀俊,周丽青,吴彪. 2023. 近江牡蛎SLC13基因家族的全基因组鉴定及急性高盐胁迫下的表达特征[J]. 中国水产科学,30(2):127-137.[Ge G Y,Chi C F,Wang Z Y,Liu Z H,Wang Y,Chen X,Sun X J,Zhou L Q,Wu B. 2023.Genome-wide identification of the SLC13 gene family in Crassostrea arakensis and its expression characteristics in gill under acute salt stress[J]. Journal of Fishery Sciences of China,30(2):127-137.]doi: 10.12264/JFSC2022-0328
    韩长志. 2014. 全基因组预测禾谷炭疽菌的分泌蛋白[J]. 生物技术,24(2):36-41.[Han C Z. 2014. Prediction for secreted proteins from Colletotrichum graminicola genome[J]. Biotechnology,24(2):36-41.]doi:10.3969/j. issn. 1004-311X.2014.02.0035.
    李欣燃,张青艳,查玮薇,朱淼. 2023. 鸡Wnt基因家族生物信息学分析及表达[J]. 中国畜牧兽医,50(1):15-25.[Li X Y,Zhang Q Y,Cha W W,Zhu M. 2023. Bioinformatics analysis and expression of Wnt gene family in chicken[J]. China Animal Husbandry & Veterinary Medicine,2023,50(1):15-25.]doi: 10.16431/j.cnki.1671-7236.2023.01.002.
    李增平,罗大全,王友祥,朱朝华. 2006. 海南岛槟榔根部及茎部病害调查及病原鉴定[J]. 热带作物学报,27(3):70-76.[Li Z P,Luo D Q,Wang Y X,Zhu C H. 2006. Survey and pathogen identification of diseases on arecanut roots and stems in Hainan Island[J]. Chinese Journal of Tropical Crops,27(3):70-76.]doi:10.3969/j.issn.1000-2561. 2006.03.014.
    刘馨怡,徐丹,刘远征,李艳霞,马蔚红,王甲水,李树和,张贺. 2022. 病原菌可可毛色二孢Lasiodiplodia theobromae对油梨枝条活性氧代谢的影响探究[J]. 中国南方果树, 51(6):110-116.[Liu X Y,Xu D,Liu Y Z,Li Y X,Ma W H,Wang J S,Li S H,Zhang H. 2022. Effects of Lasiodiplodia theobromae on active oxygen metabolism in avocado shoots[J]. South China Fruits,51(6):110-116.]doi:10. 13938/j.issn.1007-1431.20210628.
    聂燕芳,周淦,黄嘉瑶,王振中,李云锋. 2016. 尖孢镰刀菌甜瓜专化型基因组规模分泌蛋白的预测与分析[J]. 华中农业大学学报,35(3):24-29.[Nie Y F,Zhou G,Huang J Y, Wang Z Z,Li Y F. 2016. Genome-scale prediction and analysis of secreted proteins of Fusarium oxysporum f. sp.melonis[J]. Journal of Huazhong Agricultural University, 35(3):24-29.]doi: 10.13300/j.cnki.hnlkxb.2016.03.005.
    覃悦,祝友朋,韩长志. 2021. 基于全基因组序列的黄单胞菌分泌蛋白质预测及其特征分析[J]. 江苏农业学报,37(1):53-59.[Qin Y,Zhu Y P,Han C Z. 2021. Prediction and characteristic analysis of Xanthomonas campestris secretory protein based on whole genome sequence[J]. Jiangsu Journal of Agricultural Sciences,37(1):53-59.]doi: 10.3969/j.issn.1000-4440.2021.01.007.
    任亚峰,包兴涛,李冬雪,王勇,王德炉,宋宝安,陈卓. 2019.茶树叶斑病病原菌可可毛色二孢菌的鉴定[J]. 植物病理学报,49(6):857-861.[Ren Y F,Bao X T,Li D X,Wang Y,Wang D L,Song B A,Chen Z. 2019. Identification of the pathogen Lasiodiplodia theobromae causing tea leaf spot[J]. Acta Phytopathologica Sinica,49(6):857-861.]doi: 10.13926/j.cnki.apps.000400.
    苏源,李成云,赵之伟,周晓罡,李进斌,杨静,刘林,业艳芬. 2006. 稻瘟菌基因组规模分泌蛋白的预测分析[J]. 云南农业大学学报(自然科学),(3):271-275.[Su Y,Li C Y, Zhao Z W,Zhou X G,Li J B,Yang J,Liu L,Ye Y F. 2006.Primary analysis of the secretory proteins in genome scale of Magnaporthe grisea[J]. Journal of Yunnan Agricultural University(Natural Science),(3):271-275.]doi: 10.3969/j.issn.1004-390X.2006.03.001.
    唐伟,张成玲,马居奎,杨冬静,陈晶伟,高方园,谢逸萍,王芳,孙厚俊. 2023. 基于基因组预测和分析甘薯间座壳菌(Diaporthe batatas)分泌蛋白中效应因子[J]. 江苏农业学报,39(3):665-673.[Tang W,Zhang C L,Ma J K,Yang D J,Chen J W,Gao F Y,Xie Y P,Wang F,Sun H J. 2023.Genome-wide prediction and analysis of the effector protein of Diaporthe batatas[J]. Jiangsu Journal of Agricultural Sciences,39(3):665-673.]doi: 10.3969/j.issn.1000-4440.2023.03.006.
    唐玉萍,彭凡嘉,郭莉莉,赵瑞元,郑巨云,张志刚,陈浩东,李玉军,李彩红,梅正鼎. 2022. 陆地棉C2H2型锌指蛋白全基因组鉴定及表达分析[J/OL]. 分子植物育种. http://kns.cnki.net/kcms/detail/46.1068.S.20220317.1058.004.html.[Tang Y P,Peng F J,Guo L L,Zhao R Y,Zheng J Y,Zhang Z G,Chen H D,Li Y J,Li C H,Mei Z D. 2022.Genome-wide identification and stress expression analysis of C2H2-type zinc finger protein family in Gossypium hirsutum[J/OL]. Molecular Plant Breeding. http://kns.cnki.net/kcms/detail/46.1068.S.20220317.1058.004.html.]
    唐中发,秦春秀,缪卫国,林春花,郑服丛,刘文波. 2021. 海南菠萝一种叶斑病病原菌的分离与鉴定及多基因序列分析[J]. 基因组学与应用生物学,40(3):1219-1226.[Tang Z F,Qin C X,Miao W G,Lin C H,Zheng F C,Liu W B. 2021. Isolation,identification and analysis of multiple dene sequences of a pathogen of leaf spot disease on pineapple in Hainan[J]. Genomics and Applied Biology,40(3):1219-1226.]doi: 10.13417/j.gab.040.001219.
    田李,陈捷胤,陈相永,汪佳妮,戴小枫. 2011. 大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析[J]. 中国农业科学,44(15):3142-3153.[Tian L,Chen J Y, Chen X Y,Wang J N,Dai X F. 2011. Prediction and analysis of Verticillium dahliae VdLs.17 secretome[J]. Scientia Agricultura Sinica,44(15):3142-3153.]doi:10.3864/j.issn. 0578-1752.2011.15.009.
    夏雄飞,陈云芳,覃悦,韩长志. 2022. 不同类型植物病原物中分泌蛋白及CAZymes对比研究[J]. 云南农业大学学报(自然科学),37(6):949-956.[Xia X F,Chen Y F,Qin Y, Han C Z. 2022. Comparative study of secretory proteins and CAZymes in different types of plant pathogens[J]. Journal of Yunnan Agricultural University(Natural Science),37(6):949-956.]doi:10.12101/j.issn.1004-390X(n). 202111039.
    邢启凯,李铃仙,曹阳,张玮,彭军波,燕继晔,李兴红. 2020.可可毛色二孢全基因组分泌蛋白的预测及分析[J]. 中国农业科学,53(24):5027-5038.[Xing Q K,Li L X,Cao Y,Zhang W,Peng J B,Yan J Y,Li X H. 2020. Prediction and analysis of candidate secreted proteins from the genome of Lasiodiplodia theobromae[J]. Scientia Agricultura Sinica,53(24):5027-5038.]doi: 10.3864/j.issn.0578-1752.2020.24.006.
    杨赟杰,苗涵,魏莱,杨燕萍,车永和. 2023. 黑麦GIF基因家族全基因组鉴定及其表达分析[J]. 麦类作物学报,43(6):696-704.[Yang Y J,Miao H,Wei L,Yang Y P,Che Y H. 2023. Genome-wide identification and comparative analysis of GIF gene family in rye[J]. Journal of Triticeae Crops,43(6):696-704.]doi:10.7606/j.issn.1009-1041.2023. 06.04.
    于钦亮,马莉,刘林,杨静,苏源,王云月,朱有勇,李成云. 2008. 禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析[J]. 生物技术通报,(1):160-165.[Yu Q L,Ma L,Liu L,Yang J,Su Y,Wang Y Y,Zhu Y Y,Li C Y. 2020. Primary analysis of host-targeting-motif harbored secreted proteins in genome of Fusarium graminearum[J]. Biotechnology Bulletin,(1):160-165.]doi: 10.13560/j.cnki.biotech.bull.1985.2008.01.031.
    臧睿,宋璐璐,尹新明,徐超,耿月华,张猛. 2021. 葡萄座腔菌(Botryosphaeria dothidea)全基因组分泌蛋白的预测及功能分析[J]. 植物病理学报,51(4):559-571.[Zang R, Song L L,Yin X M,Xu C,Geng Y H,Zhang M. 2021.Genome-wide prediction and analysis of the secreted proteins of Botryosphaeria dothidea[J]. Acta Phytopathologica Sinica,51(4):559-571.]doi: 10.13926/j.cnki.apps.000732.
    张瑶,高弢,马桂珍,史建荣. 2022. 基于转录组测序技术分析愈创木酚对禾谷镰刀菌的抑菌机制[J]. 江苏农业学报, 38(2):343-351.[Zhang Y,Gao T,Ma G Z,Shi J R. 2022.Analysis on the antifungal mechanism of Fusarium graminearum treated by guaiacol based on transcriptome sequencing[J]. Jiangsu Journal of Agricultural Sciences,38(2):343-351.]doi: 10.3969/j.issn.1000-4440.2022.02.007.
    周晓罡,侯思名,陈铎文,陶南,丁玉梅,孙茂林,张绍松. 2011. 马铃薯晚疫病菌全基因组分泌蛋白的初步分析[J]. 遗传,33(7):125-133.[Zhou X G,Hou S M,Chen D W,Tao N,Ding Y M,Sun M L,Zhang S S. 2011. Genomewide analysis of the secreted proteins of Phytophthora infestans[J]. Hereditas(Beijing),33(7):125-133.]doi:10. 3724/SP.J.1005.2011.00785.
    Almagro A J J,Salvatore M,Emanuelsson O,Winther O, Nielsen H. 2019. Detecting sequence signals in targeting peptides using deep learning[J]. Life Science Alliance,2(5):e201900429-e201900429. doi: 10.1101/639203.
    Almagro A J J,Tsirigos K D,Sønderby C K,Petersen T N,Winther O,Brunak S,Heijne G,Nielsen H. 2019. SignalP 5.0improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology,37(4):420. doi: 10.1038/s41587-019-0036-z.
    Chen C J,Chen H,Zhang Y,Hannah R T,Margaret H F,He Y H,Xia R. 2020. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,13(8):1194-1202. doi:10.1016/j.molp.2020.06. 009.
    Chettri D,Verma A K,Verma A K. 2020. Innovations in CAZyme gene diversity and its modification for biorefinery applications[J]. Biotechnology Reports(Amsterdam, Netherlands),28:e00525. doi: 10.1016/j.btre.2020.e00525.
    Choi J,Park J,Kim D,Jung K,Kang S,Lee Y H. 2011. Fungal secretome database:Integrated platform for annotation of fungal secretomes[J]. BMC Genomics,11:105. doi:10. 1186/1471-2164-11-105.
    Contesini F J,Frandsen R J N,Damasio A. 2021. Editorial:CAZymes in biorefinery:From genes to application[J]. Frontiers in Bioengineering and Biotechnology,9:622817.doi: 10.3389/fbioe.2021.622817.
    Dalio R J D,Herlihy J,Oliveira T S,Mcdowell J M,Machado M. 2018. Effector biology in focus:A primer for computational prediction and functional characterization[J]. Molecular Plant-Microbe Interactions,31(1):22-33. doi:10. 1094/MPMI-07-17-0174-FI.
    de Guillen K,Ortiz-Vallejo D,Gracy J,Fournier E,Padilla K, André P. 2020. Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi[J]. PLoS Pathogens,11(10):e1005228.doi: 10.1371/journal.ppat.1005228.
    do Amaral A M,Antoniw J,Rudd J J,Hammond-Kosack K E. 2017. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola[J]. PLoS One,7(12):e49904. doi:10.1371/journal.pone.004 9904.
    Emanuelsson O,Nielsen H,Brunak S,von Heijne G. 2000.Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. Journal of Molecular Biology,300(4):1005-1016. doi:10.1006/jmbi.2000. 3903.
    Fankhauser N,Mäser P. 2005. Identification of GPI anchor attachment signals by a Kohonen self-organizing map[J]. Bioinformatics,21(9):1846-1852. doi: 10.1093/bioinformatics/bti299.
    Franceschett M,Maqboo A,Jiménez-Dalmaron M J,Penningto H G,Kamou S,Banfiel M J. 2017. Effectors of filamentous plant pathogens:Commonalities amid diversity[J]. Microbiology and Molecular Biology Reviews,81(2):e0 0066. doi: 10.1128/mmbr.00066-16.
    Greenbaum D,Lusconbe N M,Jansen R,Qian J,Gerstein M. 2001. Interrelating different types of genomic data,from proteome to secretome:'Oming in on function[J]. Genome Research,11(9):1463-1468. doi: 10.1101/gr.207401.
    Jiang G H,Jiang A M,Hou J G,Fan C L,Wei J G,Ren L Y, Luo J T. 2023. First report of leaf spot caused by Lasiodiplodia theobromae on Kadsura coccinea in China[J]. Plant Disease,107(7):2218. doi: 10.1094/PDIS-03-22-0591-PDN.
    Jones J D G,Dangl J L. 2006. The plant immune system[J]. Nature,444(7117):323-329. doi: 10.1038/nature05286.
    Juncker A S,Willenbrock H,Heijne G V,Brunak S,Nielsen H,Krogh A. 2003. Prediction of lipoprotein signal peptides in Gram-negative bacteria[J]. Protein Science,12(8):1652-1662. doi: 10.1110/ps.0303703.
    Kannan C,Karthik M,Priya K. 2010. Lasiodiplodia theobromae causes a damaging dieback of cocoa in India[J]. Plant Pathology,59(2). doi: 10.1016/j.tplants.2019.04.009.
    Khang C H,Berruyer R,Giraldo M C,Kankanala P,Park S Y, Czymmek K,Kang S,Valent B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement[J]. The Plant Cell,22(4):1388-1403. doi: 10.1105/tpc.109.069666.
    Kong Q,Xing S J,Xie K,Jia Z Q,Li Z L,Liu Y,Xue C L,Shi X,Wang C M,Yuan S Y. 2023. First report of Lasiodiplodia theobromae causing stem brown rot of loquat in China[J]. Plant Disease,107(7):2234. doi: 10.1094/PDIS-08-22-1982-PDN.
    Krogh A,Larsson B,Heijne G V,Sonnhammer E L L. 2001.Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes[J]. Journal of Molecular Biology,305(3):567-580. doi: 10.1006/jmbi.2000.4315.
    Mbenoun M,Zeutsa E H M,Samuels G,Amougou F N, Nyasse S. 2008. Dieback due to Lasiodiplodia theobromae,a new constraint to cocoa production in Cameroon[J]. Plant Pathology,57(2):381-381. doi: 10.1111/j.1365-3059.2007.01755.x.
    Nystrom S L,McKay D J. 2021. Memes:A motif analysis environment in R using tools from the MEME Suite[J]. PLoS Computational Biology,17(9):e1008991. doi: 10.1371/JOURNAL.PCBI.1008991.
    Oliveira-Garcia E,Valent B. 2015. How eukaryotic filamentous pathogens evade plant recognition[J]. Current Opinion in Microbiology,26:92-101. doi:10.1016/j.mib.2015. 06.012.
    Prudovsky I,Tarantini F,Landriscina M,Neivandt D,Soldi R, Kirov A,Small D,Kathir K M,Rajalingam D,Kumar T K S. 2008. Secretion without Golgi[J]. Journal of Cellular Biochemistry,103(5):1327-1343. doi: 10.1002/jcb.21513.
    Sperschneider J,Dodds P N,Gardiner D M,Singh K B,Taylor J M. 2018. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0[J]. Molecular Plant Pathology,19(9):2094-2110. doi: 10.1111/mpp.12682.
    Tan K C,Oliver R P. 2017. Regulation of proteinaceous effector expression in phytopathogenic fungi[J]. PLoS Pathogens,13(4):e1006241. doi: 10.1371/journal.ppat.1006241.
    van der Burgh A M,Joosten M H A J. 2019. Plant immunity:Thinking outside and inside the box[J]. Trends in Plant Science,24(7):587-601. doi: 10.1016/j.tplants.2019.4.009.
    Wang S J,Wang S K,Li M,Huang G Q,Su Y H,Ma H B. 2023. First report of Lasiodiplodia theobromae causing brown leaf spot on Bruguiera gymnorrhiza in China[J]. Plant Disease,107(7):2262. doi: 10.1094/PDIS-12-22-2804-PDN.
    Xing Q K,Zhou X G,Cao Y,Peng J B,Zhang W,Wang X C, Wu J H,Li X H,Yan J Y. 2023. The woody plant-degrading pathogen Lasiodiplodia theobromae effector LtCre1 targets the grapevine sugar signaling protein VvRHIP1 to suppress host immunity[J]. Journal of Experimental Botany, 74(8):2768-2785. doi: 10.1093/jxb/erad055.
    Yan J Y,Xie Y,Yao S W,Wang Z Y,Li X H. 2012. Characterization of Botryosphaeria dothidea,the causal agent of grapevine canker in China[J]. Australasian Plant Pathology,41(4):351-357. doi: 10.1007/s13313-012-0135-5.
    Zhang H,Yohe T,Huang L,Entwistle S,Wu P Z,Yang Z L, Busk P K,Xu Y,Yin Y B. 2018. dbCAN2:A meta server for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Research,46(W1):W95-W101:doi:10. 1093/nar/gky418.
    Zhou S M,Zhang H L,Li R S,Hong Q,Li Y,Xia Q F,Zhang W.2017. Function identification of the nucleotides in key cis-element of DYSFUNCTIONAL TAPETUM1(DYT1)promoter[J]. Frontiers in Plant Science,8:153. doi:10. 3389/fpls.2017.00153.
  • 加载中
计量
  • 文章访问数:  8
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-20
  • 网络出版日期:  2024-03-28

目录

    /

    返回文章
    返回