基于转录组测序的棘胸蛙SSR和SNP分子标记开发

魏朝宇, 谢永广, 魏秀英, 罗华辉, 陈敦学

魏朝宇, 谢永广, 魏秀英, 罗华辉, 陈敦学. 2022: 基于转录组测序的棘胸蛙SSR和SNP分子标记开发. 南方农业学报, 53(3): 759-767. DOI: 10.3969/j.issn.2095-1191.2022.03.017
引用本文: 魏朝宇, 谢永广, 魏秀英, 罗华辉, 陈敦学. 2022: 基于转录组测序的棘胸蛙SSR和SNP分子标记开发. 南方农业学报, 53(3): 759-767. DOI: 10.3969/j.issn.2095-1191.2022.03.017
WEI Zhao-yu, XIE Yong-guang, WEI Xiu-ying, LUO Hua-hui, CHEN Dun-xue. 2022: SSR and SNP molecular marker development based on Quasipaa spinosa transcriptome sequencing. Journal of Southern Agriculture, 53(3): 759-767. DOI: 10.3969/j.issn.2095-1191.2022.03.017
Citation: WEI Zhao-yu, XIE Yong-guang, WEI Xiu-ying, LUO Hua-hui, CHEN Dun-xue. 2022: SSR and SNP molecular marker development based on Quasipaa spinosa transcriptome sequencing. Journal of Southern Agriculture, 53(3): 759-767. DOI: 10.3969/j.issn.2095-1191.2022.03.017

基于转录组测序的棘胸蛙SSR和SNP分子标记开发

基金项目: 

贵州省科技计划项目(黔科合支撑[2019]2344号)

详细信息
    作者简介:

    魏朝宇(1996-),https://orcid.org/0000-0003-2423-1375,研究方向为水生动物育种分子标记开发,E-mail:994459261@qq.com

    通讯作者:

    陈敦学(1986-),https//orcid.org/0000-0003-0863-1176,博士,副教授,主要从事水产动物养殖与遗传育种研究工作,E-mail:chendunxue@126.com

  • 中图分类号: :S917;S966.39

SSR and SNP molecular marker development based on Quasipaa spinosa transcriptome sequencing

Funds: 

:Guizhou Science and Technology Plan Program(QKHZC[2019]2344)

  • 摘要: 【目的】基于转录组开发SSR和SNP分子标记用于评价棘胸蛙(Quasipaa spinosa)遗传多样性,为其种质资源的创新利用提供理论支撑。【方法】采用TRIzol试剂盒提取棘胸蛙肝脏、肌肉和肾脏组织总RNA,构建cDNA文库后利用Illumina HiSeq 2500测序平台进行高通量测序,通过MISA对棘胸蛙转录组测序数据进行SSR检索,并以SAMtools和VarScan v.2.2.7进行SNP查找。【结果】棘胸蛙转录组测序共获得93887条非冗余基因(Unigenes),序列总长度达91352712 bp,且所有转录组Q30均超过95.00%。在93887条Unigenes中发现33019个SSRs,其中21966条Unigenes含有SSR,6688条Unigenes含有超过1个SSR;以单核苷酸重复型SSR数最多,达25788个,且出现频率最高(27.47%)。SSR的平均长度以四核苷酸重复型最长,达35.47 bp;棘胸蛙SSR以(A/T)n为绝对优势重复基元,占总SSR的65.51%,然后依次为(C/G)n、(AT/AT)n、(AC/GT)n、(AG/CT)n、(AAT/ATT)n、(AGG/CCT)n,分别占总SSR的12.59%、5.66%、5.55%、3.31%、1.55%和1.30%。在33019个SSRs中,核苷酸重复次数主要集中在5~25次,占总SSR的99.91%,且大部分SSR位于非编码区,仅有1633个SSRs位于编码区;长度≥12 bp的SSR共计17244个,占总SSR的58.53%。挑选120对SSR引物进行引物有效性验证,发现有57对引物扩增出单一条带,且条带大小与预期结果一致。对棘胸蛙转录组序列进行SNP检索,共发现87634个SNPs,其中,56300个SNPs属于转换位点、31334个SNPs属于颠换位点,转化/颠换比达1.80,碱基的转换频率明显高于颠换频率。【结论】利用高通量转录组测序开发棘胸蛙SSR和SNP分子标记是一种切实可行的方法,能开发出通用性较高、数量较多、覆盖性较广的分子标记。棘胸蛙具有中度偏高的遗传多样性,可作为种质材料进一步开发利用。
    Abstract: Quasipaa spinosa,so as to provide appropriate molecular markers for the innovative ways of germplasm resource application.【Method】Total RNA was extracted from liver,muscle and kidney tissues of Q. spinosa to build a TRlzol kit. cDNA library and then the library was high-throughput sequenced by the Illumina HiSeq 2500 sequencing platform. Microsatellite searching software MISA was used to screen and analyze microsatellite(SSR)in the Q. spinosa transcriptome while the software SAMtools and VarScan v. 2.2.7 were used for searching SNP loci.【Result】 93887 non-redundant unigenes with a total sequence length of 91352712 bp were obtained from the transcriptome sequencing of Q. spinosa,and all transcriptome Q30 were over 95.00%. Among the 93887 unigenes,33019 potential SSR markers were identified and 21966 unigenes contained SSR loci. In additional,a total of 6688 unigenes had more than one SSR locus. The dinucleotide was the highest at 25788 and the frequency of occurrence frequency was the highest at 27.47%. The average length of SSR was 35.47 bp.(A/T)n was the absolutely dominant repeat motif of Q. spinosa SSR,accounting for 65.51% of the total SSRs,followed by(C/G)n,(AT/AT)n,(AC/GT)n,(AG/CT)n,(AAT/ATT)n,and accounting for 12.59%,5.66%,5.55%、3.31%,1.55% and 1.30% of the total SSRs,respectively. Among the 33019 potential SSR markers,the times of repetition was mainly between 5-25 times,accounting for 99.91% of the all SSRs. In additional,only 1633 located in the coding area. 17244 SSR loci whose length ≥ 12 bp accounted for 58.53% of the total SSR loci. 120 pairs of SSR primers were selected to verify the validity of the primers and 57 pairs of primers amplified a single band,and the band size was as expected. 87634 SNPs were identified(56300 transitions and 31334 transversions) from mapping sequencing reads to assembled unigenes,the transition/transversion ratio was approximately1.80 and the frequency of base transition is higher than that of transversion.【Conclusion】High-throughput transcriptome sequencing is a feasible method to develop SSR and SNP molecular markers,which can develop molecular markers with universality, large number and wide coverage. Q. spinosa has a moderately high genetic diversity,so it can be used as germplasm materials for further development and utilization.
  • 曹广勇, 张志勇, 张志伟, 陈淑吟, 祝斐, 贾超峰, 陈自强, 曾海峰, 汤晓建. 2019. 黑鲷、真鲷及其杂交子代基因编码区微卫星序列及密码子偏好性分析[J]. 海洋与湖沼, 50(5):1108-1115.[Cao G Y, Zhang Z Y, Zhang Z W, Chen S Y, Zhu F, Jia C F, Chen Z Q, Zeng H F, Tang X J. 2019. Analysis of the microsatellite sequences and codon bias of the coding sequence in Acanthopagrus schlegelii, Pagrus major and their hybrid progenies[J]. Oceanologia et Limnologia Sinica, 50(5):1108-1115.]doi: 10.11693/hyhz20190200038.
    迟天舒. 2020. 基于高通量测序东北林蛙微卫星标记开发与应用[D]. 沈阳:沈阳师范大学.[Chi T S. 2020. Development and application of microsatellite markers based on next-generation sequencing for Rana dybowskii[D]. Shenyang:Shenyang Nomal University.]doi: 10.27328/d.cnki.gshsc.2020.000539.
    黄杰, 杜联明, 李玉芝, 李午佼, 张修月, 岳碧松. 2012. 红原鸡全基因组中微卫星分布规律研究[J]. 四川动物, 31(3):358-363.[Huang J, Du L M, Li Y Z, Li W J, Zhang X Y, Yue B S. 2012. Distribution regularities of microsatellites in the Gallus gallus genome[J]. Sichuan Journal of Zoology, 31(3):358-363.]doi:10.3969/j.issn.1000-7083. 2012.03.005.
    李超, 侯吉伦, 王桂兴, 张晓彦, 刘永富, 童爱萍, 刘海金. 2015. 基于牙鲆RNA-seq数据中SSR标记的信息分析[J]. 海洋渔业, 37(2):122-127.[Li C, Hou J L, Wang G X , Zhang X Y, Liu Y F, Tong A P, Liu H J. 2015. Bioinformatic analysis of SSR markers in transcriptomic sequenceing Paralichthys olivaceus[J]. Marine Fisheries, 37(2):122-127.] doi:10.13233/j. cnki. mar. fish. 2015. 02.004.
    李清莹, 仲崇禄, 姜清彬, 张勇, 陈羽, 魏永成, 陈珍. 2019. 珍贵树种火力楠转录组SSR特征分析[J]. 基因组学与应用生物学, 38(4):1674-1682.[Li Q Y, Zhong C L, Jiang Q B , Zhang Y, Chen Y, Wei Y C, Chen Z. 2019. Characteristic analysis of microsatellites in the transcriptome of Michelia macclurei of rare tree species[J]. Genomics and Applied Biology, 38(4):1674-1682.]doi:10.13417/j.gab. 038.001674.
    梁霞, 王慧琪, 马宇璇, 宋磊, 吴超, 李亮徽, 张国松. 2021. 鲤鱼(Cyprinus carpio)全基因组微卫星分布特征研究[J]. 南京师大学报 (自然科学版), 44 (3):103-111.[Liang X, Wang H Q, Ma Y X, Song L, Wu C, Li L H, Zhang G S. 2021. Distribution characteristics of microsatellites in the whole genome of Cyprinus carpio, Linnaeus[J]. Journal of Nanjing Normal University(Natural Science Edition), 44(3):103-111.]doi:10.3969/j.issn.1001-4616.2021.03. 016.
    刘洪涛, 刘金叶, 杨明秋, 何玉贵, 王永波. 2020. 基于转录组测序的波纹唇鱼SSR和SNP多态特征分析[J]. 基因组学与应用生物学, 39(6):2451-2461.[Liu H T, Liu J Y, Yang M Q, He Y G, Wang Y B. 2020. SSR and SNP polymorphic feature analysis based on Cheilinus undulatus transcriptome[J]. Genomics and Applied Biology, 39(6):2451-2461.]doi: 10.13417/j.gab.039.002451.
    刘磊, 彭士明, 高权新, 张晨捷, 施兆鸿. 2016. 基于银鲳RNAseq数据中SSR标记的信息分析[J]. 安徽农业科学, 44(28):102-105.[Liu L, Peng S M, Gao Q X, Zhang C J, Shi Z H. 2016. Bioinformatic analysis of SSR markers based on RNA-seq of Pampus argenteus[J]. Journal of Anhui Agricultural Sciences, 44(28):102-105.]doi:10. 13989/j.cnki.0517-6611. 2016.28.033.
    马秋月, 戴晓港, 陈赢男, 张得芳, 廖卓毅, 李淑娴. 2013. 枣基因组的微卫星特征[J]. 林业科学, 49(12):81-87.[Ma Q Y, Dai X G, Chen Y N, Zhang D F, Liao Z Y, Li S X. 2013. Characterization of microsatellites in the genome of Ziziphus jujuba[J]. Scientia Silvae Sinicae, 49(12):81-87.]doi: 10.11707/j.1001-7488.20131212.
    倪守胜, 杨钰, 柳淑芳, 庄志猛. 2018. 基于高通量测序的虾夷扇贝基因组微卫星特征分析[J]. 渔业科学进展, 39(1):107-113.[Ni S S, Yang Y, Liu S F, Zhuang Z M. 2018.Microsatellite analysis of Patinopecten yessoensis using next-generation sequencing method[J]. Progress in Fishery Sciences, 39(1):107-113.]doi:10.11758/yykxjz. 20161209001.
    孙海林, 孙成飞, 董浚键, 田园园, 胡婕, 叶星. 2019. 翘嘴鳜转录组测序及SSR新标记的开发与应用[J]. 基因组学与应用生物学, 38(10):4413-4421.[Sun H L, Sun C F, Dong J J, Tian Y Y, Hu J, Ye X. 2019. Transcriptome sequencing and development and application of novel SSR markers for Siniperca chuatsi[J]. Genomics and Applied Biology, 38(10):4413-4421.]doi:10.13417/j.gab.038. 004413.
    孙赛红. 2014. 红鳍东方鲀4个免疫基因的原核表达及群体EST-SSRs分析[D]. 大连:大连海洋大学.[Sun S H. 2014. Prokaryotic expression analysis of four immune genes and analysis of group EST-SSRs in Takifugu rubri pes[D]. Dalian:Dalian Ocean University.]doi: 10.7666/d.D495822.
    熊良伟, 王帅兵, 岳丽佳, 王建国, 陶桂庆, 徐亮, 王权. 2018.
    宽体金线蛭基因组SSR序列特征分析及其分子标记开发[J]. 南方农业学报, 49(11):2298-2303.[Xiong L W, Wang S B, Yue L J, Wang J G, Tao G Q, Xu L, Wang Q. 2018. SSR sequence characters for genome of Whitmania pigra Whitman and development of molecular markers[J]. Journal of Southern Agriculture, 49 (11):2298-2303.]doi: 10.3969/j.issn.2095-1191.2018.11.26.
    徐杰杰, 毕宜慧, 程景颢, 邢秀梅, 暨杰, 王涛, 尹绍武, 张凯. 2021. 中华绒螯蟹 (Eriocheir sinensis) 全基因组微卫星分布特征研究[J]. 基因组学与应用生物, 40(7-8):2422-2429.[Xu J J, Bi Y H, Cheng J H, Xing X M, Ji J, Wang T , Yin S W, Zhang K. 2021. Study on distribution characteristics of whole genome microsatellite of Eriocheir sinensis[J]. Genomics and Applied Biology, 40 (7-8):2422-2429.]doi: 10.13417/j.gab.040.002422.
    杨芩, 付燕, 刘雅兰, 张婷渟, 彭舒, 邓洁. 2021. 蓝莓花粉转录组SSR位点信息分析[J]. 分子植物育种, 19(10):3383-3391.[Yang Q, Fu Y, Liu Y L, Zhang T T, Peng S, Deng J. 2021. Analysis of SSR information in Bluebery pollen transcriptome[J]. Molecular Plant Breeding, 19 (10):3383-3391.]. doi: 10.13271/j.mpb.019.003383.
    岳华梅, 翟晴, 宋明月, 叶欢, 杨晓鸽, 李创举. 2016. 基于转录组测序的兴国红鲤微卫星标记筛选[J]. 淡水渔业, 46(1):24-28.[Yue H M, Zhai Q, Song M Y, Ye H, Yang X G, Li C J. 2016. Development of microsatellite markers in Cyprinus carpio var. singuonensis using next-generation sequencing[J]. Freshwater Fisheries, 46(1):24-28.]doi: 10.13721/j.cnki.dsyy.2016.01.004.
    赵燕, 陈红菊, 孔维祎, 季相山, 王慧. 2020. 日本沼虾多态性标记筛选及群体遗传结构分析[J]. 水产科学, 39(5):639-648.[Zhao Y, Chen H J, Kong W Y, Ji X S, Wang H. 2020. Screening of polymorphic markers and analysis of population genetic structure of oriental river prawn Macrobrachium nipponense[J]. Fisheries Science, 39 (5):639-648.]doi: 10.16378/j.cnki.1003-1111.2020.05.001.

    Bai Z Y, Yin Y X, Hu S N, Wang G L, Zhang X W, Li J L. 2009. Identification of genes involved in immune response, microsatellite, and SNP markers from expressed sequence tags generated from hemocytes of freshwater pearl mussel(Hyriopsis cumingii)[J]. Marune Biotechnology, 11 (4):520. doi: 10.1007/s10126-008-9163-0.

    Borodinsky L N. 2017. Xenopus laevis as a model organism for the study of spinal cord formation, development, function and regeneration[J]. Frontiers in Neural Circuits, 11:90. doi: 10.3389/fncir.2017.00090.

    Chan H K, Shoemaker K T, Karraker N E. 2014. Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure[J]. Biological Conservation, 170:3-9. doi: 10.1016/j.biocon.2013.12.014.

    Che R B, Sun Y N, Wang R X, Xu T J. 2014. Transcriptomic analysis of endangered Chinese salamander:Identification of immune, sex and reproduction-related genes and genetic markers[J]. PLoS One, 9 (1):e87940. doi: 10.1371/journal.pone.0087940.

    Gao Z X, Luo W, Liu H, Zeng C, Liu X L, Yi S K, Wang W M. 2012. Transcriptome analysis and SSR/SNP markers information of the blunt snout bream(Megalobrama amblycephala)[J]. PLoS One, 7(8):e42637. doi: 10.1371/journal.pone.0042637.

    Garrido-Cardenas J A, Mesa-Valle C, Manzano-Agugliaro F. 2018. Trends in plant research using molecular marker[J]. Planta, 247(3):543-557. doi: 10.1007/s00425-017-2829-y.

    Harr B,Schlötterer C. 2000. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genomewide underrepresentation[J]. Genetics, 155 (3):1213-1220.doi: 10.1093/genetics/155.3.1213.

    Hellsten U, Harland R M, Gilchrist M J, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam N H, Shu S, Taher L , Blitz I L, Blumberg B, Dichmann D S, Dubchak I, Amaya E, Detter J C, Fletcher R, Gerhard D S, Goodstein D, Graves T, Grigoriev I V, Grimwood J, Kawashima T, Lindquist E, Lucas S M, Mead P E, Mitros T, Ogino H, Ohta Y, Poliakov A V, Pollet N, Robert J, Salamov A, Sater A K, Schmutz J, Terry A, Vize P D, Warren W C, Wells D, Wills A, Wilson R K, Zimmerman L B, Zorn A M , Grainger R, Grammer T, Khokha M K, Richardson P M ,Rokhsar D S. 2010. The genome of the Western clawed frog Xenopus tropicalis[J]. Science, 328(5978):633-636. doi: 10.1126/science.1183670.

    Hsu T H, Chiu Y T, Lee H T, Gong H Y, Huang C W. 2021.Development of EST-molecular markers from RNA sequencing for genetic management and identification of growth traits in potato grouper(Epinephelus tukula)[J]. Biology(Basel), 10(1):36. doi:10.3390/biology10010 036.

    Hu W F, Dong B J, Kong S S, Mao Y Y, Zheng R Q. 2017.

    Pathogen resistance and gene frequency stability of major histocompatibility complex class IIB alleles in the giant spiny frog Quasipaa spinosa[J]. Aquaculture, 468:410-416. doi: 10.1016/j.aquaculture.2016.11.001.

    Huang Y, Xiong J L, Gao X C, Sun X H. 2017. Transcriptome analysis of the Chinese giant salamander(Andrias davidianus)using RNA-sequencing[J]. Genomics Data, 14:126-133. doi: 10.1016/j.gdata.2017.10.005.

    Jo E, Lee S J, Choi E, Kim J, Lee S G, Lee J H, Kim J H, Park H. 2021. Whole genome survey and microsatellite motif identification of Artemia franciscana[J]. Bioscience Reports, 41(3):BSR20203868. doi:10.1042/BSR20 203868.

    Li B , Dewey C N. 2011. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 12:323. doi:10.1186/ 1471-2105-12-323.

    Li C J, Ling Q F, Ge C, Ye Z Q, Han X F. 2015. Transcriptome characterization and SSR discovery in large-scale loach Paramisgurnus dabryanus(Cobitidae, Cypriniformes)[J]. Gene, 557 (2):201-208. doi:10.1016/j.gene. 2014.12.034.

    Mable B K, Alexandrou M A, Taylor M I. 2011. Genome duplication in amphibians and fish:An extended synthesis[J]. Journal of Zoology, 284(3):151-182. doi:10.1111/j. 1469-7998.2011.00829.x.

    Pandey M, Kumar R, Srivastava P, Agarwal S, Srivastava S, Nagpure N S, Jena J K, Kushwaha B. 2018. WGSSAT:A high-throughput computational pipeline for mining and annotation of SSR markers from whole genomes[J]. Journal of Heredity, 109(3):339-343. doi: 10.1093/jhered/esx075.

    Rhode C,Roodt-Wilding R. 2011. Bioinformatic survey of Haliotis midae microsatellites reveals a non-random distribution of repeat motifs[J]. Biological Bulletin, 221 (2):147-154. doi: 10.1086/BBLv221n2p147.

    Savage A E, Kiemnec-Tyburczy K M, Ellison A R, Fleischer R C, Zamudio K R. 2014. Conservation and divergence in the frog immunome:Pyrosequencing and de novo assembly of immune tissue transcriptomes[J]. Gene,542(2):98-108. doi: 10.1016/j.gene.2014.03.051.

    Trick M, Long Y, Meng J L, Bancroft I. 2009. Single nucleotide polymorphism(SNP)discovery in the polyploidy Brassica napus using solexa transcriptome sequencing[J]. Plant Biotechnol Journal, 7(4):334-346. doi:10.1111/j.1467-7652. 2008.00396.x.

    Tsai H Y, Hamilton A, Guy D R, Tinch A E, Bishop S C, Houston R D. 2015.Verification of SNPs associated with growth traits in two populations of farmed Atlantic salmon[J]. International Journal of Molecular Sciences, 17(1):5. doi: 10.3390/ijms17010005.

    Wang D, Liao X L, Cheng L, Yu X M, Tong J G. 2007. Development of novel EST-SSR markers in common carp by data mining from public EST sequences[J]. Aquaculture, 271(1-4):558-574. doi:10.1016/j.aquaculture.2007.06. 001.

    Wang Y, Yang L D, Wu B, Song Z B, He S P. 2015. Transcriptome analysis of the plateau fish(Triplophysa dalaica):Implications for adaptation to hypoxia in fishes[J]. Gene, 565 (2):211-220. doi: 10.1016/j.gene.2015.04.023.

    Xia Y, Luo W, Yuan S Q, Zheng Y C, Zeng X M. 2018. Microsatellite development from genome skimming and transcriptome sequencing:Comparison of strategies and lessons from frog species[J]. BMC Genomics, 19(1):886.doi: 10.1186/s12864-018-5329-y.

    Yáñez J M, Yoshida G, Barria A, Palma-Véjares R, Travisany D , Díaz D, Cáceres G, Cádiz M I, López M E, Lhorente J P ,Jedlicki A,Soto J,Salas D,Maass A. 2020. Highthroughput single nucleotide polymorphism(SNP)discovery and validation through whole-genome resequencing in Nile tilapia(Oreochromis niloticus)[J]. Marine Biotechnology (NY), 22 (1):109-117. doi: 10.1007/s10126-019-09935-5.

    Ye S P, Huang H, Zheng R Q, Zhang J Y, Yang G, Xu S X. 2013. Phylogeographic analyses strongly suggest cryptic speciation in the giant spiny frog(Dicroglossidae:Paa spinosa)and interspecies hybridization in Paa[J]. PLoS One, 8:e70403. doi: 10.1371/journal.pone.0070403.

    Yu D D, Zheng R Q, Lu Q F, Yang G, Fu Y, Zhang Y. 2016.Genetic diversity and population structure for the conservation of giant spiny frog(Quasipaa spinosa)using microsatellite loci and mitochondrial DNA[J]. Asian Herpetological Research, 7(2):75-86. doi:10.16373/j.cnki.ahr. 150040.

    Zhang J, Ma W G, Song X M, Lin Q H, Gui J F, Mei J. 2014.Characterization and development of EST-SSR markers derived from transcriptome of yellow catfish[J]. Molecules, 19(10):16402-16415. doi:10.3390/molecules1910 16402.

    Zhang L L, Bao Z M, Wang S, Hu X L, Hu J J. 2008. FISH mapping and identification of Zhikong scallop(Chlamys farreri)chromosomes[J]. Marine Biotechnology(NY), 10 (2):151-157. doi: 10.1007/s10126-007-9045-x.

    Zhang S Y, Li J, Qin Q, Liu W, Bian C, Yi Y H, Wang M H, Zhong L Q, You X X, Tang S K, Liu Y S, Huang Y, Gu R B, Xu J M, Bian W J, Shi Q, Chen X H. 2018. Wholegenome sequencing of Chinese yellow catfish provides a valuable genetic resource for high-throughput identification of toxin genes[J]. Toxins(Basel), 10 (12):488. doi: 10.3390/toxins10120488.

    Zhao H, Fuller A, Thongda W, Mohammed H, Abernathy J, Beck B, Peatman E. 2019. SNP panel development for genetic management of wild and domesticated white bass(Morone chrysops)[J]. Animal Genetics, 50(1):92-96.doi: 10.1111/age.12747.

    Zhao X Y, Tan Z Y, Feng H P, Yang R H, Li M F, Jiang J H, Shen G L, Yu R Q. 2011. Microsatellites in different Potyvirus genomes:Survey and analysis[J]. Gene, 488(1-2):52-56. doi: 10.1016/j.gene.2011.08.016.

    Zheng R Q, Ye R H, Yu YY, Yang G. 2009. Fifteen polymorphic microsatellite markers for the giant spiny frog, Paa spinosa[J]. Molecular Ecology Resources, 9(1):336-368.doi: 10.1111/j.1755-0998.2008.02420.x.

  • 期刊类型引用(5)

    1. 夏琼,陈泽楷,李高聪,刘大召. 基于多源数据的西北印度洋涡旋时空分布及大气响应. 广东海洋大学学报. 2023(01): 60-67 . 百度学术
    2. 雷骆,祝骏贤,陈辰,王亚坤,刘晓莉,洪孝友,于凌云,魏成清,李伟,朱新平. 基于转录组测序的中华鳖SSR和SNP特征分析及性别标记筛选. 广东海洋大学学报. 2023(01): 25-32 . 百度学术
    3. 韩书雅,钟如卓,伍灵君,宋欣霖,赖卓欣,郑哲,王庆恒. 马氏珠母贝CD-MPR基因序列特征及其在耐低温品系的选择分析. 南方农业学报. 2023(04): 1224-1234 . 本站查看
    4. 于爱清,施永海,徐嘉波,刘永士. 美洲鲥脑转录组多态性EST-SSR的规模化开发与利用. 西北农林科技大学学报(自然科学版). 2023(11): 1-12 . 百度学术
    5. 魏朝宇,汪小冬,魏秀英,袁鸿,姚红艳,陈敦学. 5个棘胸蛙养殖群体微卫星遗传多样性分析. 广西师范大学学报(自然科学版). 2022(06): 206-214 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  76
  • HTML全文浏览量:  2
  • PDF下载量:  4
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-03-27

目录

    /

    返回文章
    返回