构树bZIP基因家族鉴定及硒代谢相关基因筛选

卜宪辰, 郭龙飞, 祝嫦晔, 陈强文, 程水源, 张威威, 许锋, 廖咏玲

卜宪辰, 郭龙飞, 祝嫦晔, 陈强文, 程水源, 张威威, 许锋, 廖咏玲. 2025: 构树bZIP基因家族鉴定及硒代谢相关基因筛选. 南方农业学报, 56(1): 135-148. DOI: 10.3969/j.issn.2095-1191.2025.01.012
引用本文: 卜宪辰, 郭龙飞, 祝嫦晔, 陈强文, 程水源, 张威威, 许锋, 廖咏玲. 2025: 构树bZIP基因家族鉴定及硒代谢相关基因筛选. 南方农业学报, 56(1): 135-148. DOI: 10.3969/j.issn.2095-1191.2025.01.012
BU Xian-chen, GUO Long-fei, ZHU Chang-ye, CHEN Qiang-wen, CHENG Shui-yuan, ZHANG Wei-wei, XU Feng, LIAO Yong-ling. 2025: Identification of bZIP gene family and screening of selenium metabolism-related candidate genes in Broussonetia papyrifera L.. Journal of Southern Agriculture, 56(1): 135-148. DOI: 10.3969/j.issn.2095-1191.2025.01.012
Citation: BU Xian-chen, GUO Long-fei, ZHU Chang-ye, CHEN Qiang-wen, CHENG Shui-yuan, ZHANG Wei-wei, XU Feng, LIAO Yong-ling. 2025: Identification of bZIP gene family and screening of selenium metabolism-related candidate genes in Broussonetia papyrifera L.. Journal of Southern Agriculture, 56(1): 135-148. DOI: 10.3969/j.issn.2095-1191.2025.01.012

构树bZIP基因家族鉴定及硒代谢相关基因筛选

基金项目: 

国家自然科学基金项目(32371929)

硒资源研究与生物应用湖北省重点实验室开放基金项目(PT10202311)

恩施州“启航专项”科技计划项目(XYJ2023000008)

荆州市科技局科技计划项目(2023EC40)

详细信息
    作者简介:

    卜宪辰(2000-),https://orcid.org/0009-0000-2661-0358,研究方向为林木次生代谢分子生物学,E-mail:buxianchen0905@63.com

    通讯作者:

    许锋(1979-),https://orcid.org/0000-0003-3212-6284,教授,主要从事经济林种质创新利用及木本药用植物次生代谢机制研究工作,E-mail:xufeng@yangtzeu.edu.cn

    廖咏玲(1979-),https://orcid.org/0009-0008-1580-3080,副教授,主要从事林木次生代谢分子生物学研究工作,E-mail:liaoyongling@yeah.net

  • 中图分类号: S792.99

Identification of bZIP gene family and screening of selenium metabolism-related candidate genes in Broussonetia papyrifera L.

Funds: 

National Natural Science Foundation of China(32371929)

Open Fund Project of Hubei Key Laboratory of Selenium Resources Research and Biological Application(PT10202311)

Enshi Prefecture“Set Sail”Science and Technology Plan Projec(tXYJ2023000008)

Science and Technology Plan Project of Jingzhou Science and Tech‐nology Bureau(2023EC40)

  • 摘要: 【目的】 对构树bZIP基因家族成员进行鉴定及分析,并筛选构树中参与硒代谢的关键基因,为深入研究构树bZIP基因家族生物学功能及其在构树硒代谢中的作用机制提供理论依据。【方法】 基于构树全基因组数据,利用生物信息学方法鉴定构树bZIP基因家族成员,并对其基因结构、启动子顺式作用元件、蛋白的系统进化关系等进行分析,并通过根癌农杆菌介导烟草叶片的瞬时转化法进行蛋白亚细胞定位。通过转录组测序(RNA-Seq)和实时荧光定量PCR分析构树bZIP家族基因在不同硒源及不同浓度处理下的表达水平。【结果】 共鉴定得到38个bZIP基因家族成员(BpbZIP01~BpbZIP38),编码的氨基酸数量为140~894个,相对分子质量为16357.39~96969.63Da,理论等电点为5.24~9.76,均为亲水性蛋白,不稳定系数为52.54~73.89,36个BpbZIPs蛋白定位于细胞核,BpbZIP15和BpbZIP19分别定位于过氧化物酶体和内质网。由系统发育进化树可知,将BpbZIPs蛋白分为10个亚族,BpbZIPs蛋白在各亚族中的数量为6个(A亚族)、1个(B亚族)、1个(C亚族)、7个(D亚族)、2个(E亚族)、1个(F亚族)、4个(G亚族)、2个(H亚族)、6个(I亚族)和8个(S亚族),各亚族中多数BpbZIPs与桑树bZIP聚成一支。不同BpbZIPs基因在外显子数量上差异较大,为1~16个,但相同亚族的基因长度和结构具有一定的相似性。BpbZIPs基因启动子含有光响应、激素和胁迫应答等多种响应元件。在不同浓度的硒酸钠和亚硒酸钠处理下,除BpbZIP17基因未表达外,其余BpbZIPs基因均对硒处理有上调或下调表达。结合相关分析和实时荧光定量PCR结果可知,亚硒酸钠和硒酸钠处理后BpbZIP04BpbZIP05基因的表达水平均与总硒含量密切相关。【结论】 构树bZIP基因家族成员参与多种生物和非生物胁迫,BpbZIP04BpbZIP05基因在构树硒代谢与耐受性中发挥重要作用。
    Abstract: 【Objective】 To identify and analyze the members of bZIP(basic leucine zipper) gene family members in Broussonetia papyrifera L.,and screen the key genes involved in selenium metabolism in B. papyrifera,which could provide theoretical reference for further study of the biological function mechanism of B. papyrifera bZIP gene family and its role in selenium metabolism. 【Method】 Based on the complete genome data of B. papyrifera,bioinformatics methods were used to identify the members of the bZIP gene family in B. papyrifera. The analysis included studying their gene structure,promoter cis-elements,protein systematic evolution relationships,and the transient transformation of tobacco leaves mediated by Agrobacterium tumefaciens was used for protein subcellular localization. The expression levels of B. papyrifera bZIP family genes under different selenium sources and concentrations were analyzed by transcriptome sequencing(RNASeq) and real-time fluorescence quantitative PCR.【Result】A total of 38 bZIP gene family members were identified(BpbZIP01-BpbZIP38),with number of amino acids encoded ranging from 140 to 894 amino acids,relative molecular weights ranging from 16357.39 to 96969.63 Da,theoretical isoelectric points ranging from 5.24 to 9.76,all of which were hydrophilic proteins,and instability coefficients ranging from 52.54 to 73.89. Among them,36 BpbZIPs were localized in the nucleus,while BpbZIP15 and BpbZIP19 were localized in the peroxisome and endoplasmic reticulum respectively.Based on the phylogenetic tree,the BpbZIPs proteins were divided into 10 subfamilies. The number of BpbZIPs proteins in each subfamily was 6(subfamily A), 1(subfamily B), 1(subfamily C), 7(subfamily D), 2(subfamily E), 1(subfamily F), 4(subfamily G), 2(subfamily H), 6(subfamily I) and 8(subfamily S). In each subfamily, most BpbZIPs proteins and the bZIP protein of the mulberry tree were clustered into a branch. The number of exons of different BpbZIPs genes varied greatly, ranging from 1 to 16, but the gene length and structure of the same subfamily had certain similarities. BpbZIPs gene promoters contained various response elements such as light response,hormone response and stress response. Under different concentrations of sodium selenate and sodium selenite treatments,except for BpbZIP17,all BpbZIPs genes responded to selenium treatment by up-regulation or down-regulation. The results of correlation analysis and real-time fluorescence quantitative PCR showed that the expression levels of BpbZIP04 and BpbZIP05 genes were closely related to the total selenium content after sodium selenite and sodium selenate treatments. 【Conclusion】 Members of the bZIP gene family of B. papyrifera are involved in various biological and non-biological stresses. BpbZIP04 and BpbZIP05genes play important roles in selenium metabolism and tolerance in B. papyrifera.
  • 陈思思,谢牧洪,崔茂凯,李文凯,徐正刚,贾彩霞,杨桂燕.2022.构树转录因子BpbZIP1的鉴定及镉胁迫响应分析[J].植物研究,42(3):394-402.[Chen S S,Xie M H,Cui M K,Li W K,Xu Z G,Jia C X,Yang G Y.2022.Identifi-cation of Broussonetia papyrifera transcription factor BpbZIP1 and analysis of its response to cadmium stress[J].Bulletin of Botanical Research,42(3):394-402.]doi: 10.7525/j.issn.1673-5102.2022.03.009.
    方灿,夏豪.2022.硒在动脉粥样硬化中的研究进展[J].中国心血管病研究,20(1):91-94.[Fang C,Xia H.2022.Research progress of selenium in atherosclerosis[J].Chi-nese Journal of Cardiovascular Research,20(1):91-94.]doi: 10.3969/j.issn.1672-5301.2022.01.017.
    孙晓丽,李勇,才华,柏锡,纪巍,季佐军,朱延明.2011.拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导[J].作物学报,37(4):612-619.[Sun X L,Li Y,Cai H,Bai X,Ji W,Ji Z J,Zhu Y M.2011.Arabidopsis b ZIP1 transcription factor binding to the ABRE cis-element regulates abscisic acid signal transduction[J].Acta Agro-nomica Sinica,37(4):612-619.]doi: 10.3724/SP.J.1006.2011.00612.
    王学求,柳青青,刘汉粮,胡庆海,吴慧,王玮.2021.关键元素与生命健康:中国耕地缺硒吗?[J].地学前缘,28(3):412-423.[Wang X Q,Liu Q Q,Liu H L,Hu Q H,Wu H,Wang W.2021.Key elements and human health:Is China’s arable land selenium-deficient?[J].Earth Science Fron-tiers,28(3):412-423.]doi: 10.13745/j.esf.sf.2021.1.13.
    郑佳东,王红霞,许重远,黄宝康.2023.构树内生真菌P-L12和C-J1代谢产物的抗肿瘤活性研究[J].中国临床药理学杂志,39(10):1427-1430.[Zheng J D,Wang H X,Xu Z Y,Huang B K.2023.Antitumor activity of secondary metabolites from endophytic fungi P-L12 and C-J1 from Broussonetia papyrifera[J].The Chinese Journal of Clini-cal Pharmacology,39(10):1427-1430.]doi: 10.13699/j.cnki.1001-6821.2023.10.013.
    周宏.2017.桑树抗旱相关4个转录因子家族鉴定与表达分析[D].镇江:江苏科技大学.[Zhou H.2017.Identifica-tion and expression analysis of drought-resistant related 4transcription factor families in mulberry (Morus L.)[D].Zhenjiang:Jiangsu University of Science and Technology.]

    Alves M S,Dadalto S P,Gonçalves A B,De Souza G B,Barros V A,Fietto L G.2013.Plant bZIP transcription factors responsive to pathogens:A review[J].International Jour-nal of Molecular Sciences,14(4):7815-7828.doi: 10.3390/ijms14047815.

    Bazylak G,Siepak M,Przybylska A,Gryn A,Sperkowska B.2016.Melatonin and selenium content in dried white mul-berry leaves,hawthorn inflorescences and multiherbal blends used as functional dietary supplements[J].Planta Medica,81(S1):S1-S381.doi: 10.1055/s-0036-1597031.

    Bjørklund G,Shanaida M,Lysiuk R,Antonyak H,Klishch I,Shanaida V,Peana M.2022.Selenium:An antioxidant with a critical role in anti-aging[J].Molecules,27(19):6613.doi: 10.3390/molecules27196613.

    Cao D,Liu Y L,Ma L L,Liu Z H,Li J,Wen B B,Zhang X N,Yin P,Jin X F,Huang J N.2021.Genome-wide identifica-tion and characterization of phosphate transporter gene family members in tea plants (Camellia sinensis L.O.kun-tze) under different selenite levels[J].Plant Physiology and Biochemistry,166:668-676.doi: 10.1016/j.plaphy.2021.06.038.

    Chen C J,Chen H,Zhang Y,Thomas H R,Frank M H,He YH,Xia R.2020.TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]Molecu-lar Plant,13(8):1194-1202.doi: 10.1016/j.molp.2020.06.009.

    Chen Q W,Yu L,Chao W,Xiang J,Yang X Y,Ye J B,Liao XL,Zhou X,Rao S,Cheng S Y,Cong X,Xiao B,Xu F.2022.Comparative physiological and transcriptome analy-sis reveals the potential mechanism of selenium accumula-tion and tolerance to selenate toxicity of Broussonetia papyrifera[J].Tree Physiology,42(12):2578-2595.doi: 10.1093/treephys/tpac095.

    Chen Q W,Zhu C Y,Guo L F,Bu X C,Yang W,Cheng S Y,Cong X,Xu F.2024.Genome-wide identification of HMTgene family explores BpHMT2 enhancing selenium Accu-mulation and Tolerance in Broussonetia papyrifera[J].Tree Physiology,44(4):tpae030.doi:10.1093/tree phys/tpae030.

    Dröge-Laser W,Snoek B L,Snel B,Weiste C.2018.The Arabi-dopsis bZIP transcription factor family-An update[J].Current Opinion in Plant Biology,45(Pt A):36-49.doi: 10.1016/j.pbi.2018.05.001.

    Duan L L,Mo Z J,Fan Y,Li K Y,Yang M F,Li D C,Ke Y Z,Zhang Q,Wang F Y,Fan Y,Liu R X.2022.Genome-wide identification and expression analysis of the bZIP transcrip-tion factor family genes in response to abiotic stress in Nicotiana tabacum L[J].BMC Genomics,23(1):318.doi: 10.1186/s12864-022-08547-z.

    Duvaud S,Gabella C,Lisacek F,Stockinger H,Ioannidis V,Durinx C.2021.Expasy,the Swiss bioinformatics resource portal,as designed by its users[J].Nucleic Acids Research,49(W1):W216-W227.doi: 10.1093/nar/gkab225.

    Fang H H,Liu Z Q,Long Y P,Liang Y L,Jin Z P,Zhang L P,Liu D M,Li H,Zhai J X,Pei Y X.2017.The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+tolerance in Arabidopsis[J].The Plant Journal:For Cell and Molecular Biology,91(6):1038-1050.doi: 10.1111/tpj.13627.

    Gangappa S N,Botto J F.2016.The multifaceted roles of HY5in plant growth and development[J].Molecular Plant,9(10):1353-1365.doi: 10.1016/j.molp.2016.07.002.

    GibalováA,SteinbachováL,Hafidh S,BláhováV,Gadiou Z,Michailidis C,Műller K,Pleskot R,DupľákováN,Honys D.2017.Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gameto-phyte[J].Plant Reproduction,30(1):1-17.doi: 10.1007/s00497-016-0295-5.

    Guo R K,Wen X,Zhang W,Huang L,Peng Y,Jin L,Han H H,Zhang L L,Li W Y,Guo H W.2023.Arabidopsis EIN2represses ABA responses during germination and early seedling growth by inactivating HLS1 protein indepen-dently of the canonical ethylene pathway[J].The Plant Journal:For Cell and Molecular Biology,115(6):1514-1527.doi: 10.1111/tpj.16335.

    Han H,Wang C N,Yang X Y,Wang L N,Ye J B,Xu F,Liao YL,Zhang W W.2023.Role of bZIP transcription factors in the regulation of plant secondary metabolism[J].Planta,258(1):13.doi: 10.1007/s00425-023-04174-4.

    Han H,Xu F,Li Y T,Yu L,Fu M Y,Liao Y L,Yang X Y,Zhang W W,Ye J B.2021.Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L[J].Scien-tific Reports,11(1):23420.doi: 10.1038/s41598-021-02839-2.

    Hao Y Y,Huang S,Liu G K,Zhang J,Liu G,Cao Z J,Wang YJ,Wang W,Li S L.2021.Effects of different parts on the chemical composition,silage fermentation profile,In vitro and in situ digestibility of paper mulberry[J].Animals,11(2):413.doi: 10.3390/ani11020413.

    Jin J P,Tian F,Yang D C,Meng Y Q,Kong L,Luo J C,Gao G.2017.PlantTFDB 4.0:Toward a central hub for transcrip-tion factors and regulatory interactions in plants[J].Nucleic Acids Research,45(D1):D1040-D1045.doi: 10.1093/nar/gkw982.

    Lescot M,Déhais P,Thijs G,Marchal K,Moreau Y,Van de Peer Y,RouzéP,Rombauts S.2002.PlantCARE,a data-base of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,30(1):325-327.doi: 10.1093/nar/30.1.325.

    Li H Y,Li L X,Shangguan G D,Jia C,Deng S N,Noman M,Liu Y L,Guo Y X,Han L,Zhang X M,Dong Y Y,Ahmad N,Du L N,Li H Y,Yang J.2020.Genome-wide identifica-tion and expression analysis of b ZIP gene family in Car-thamus tinctorius L[J].Scientific Reports,10(1):15521.doi: 10.1038/s41598-020-72390-z.

    Liao S X,Deng Z H,Cui K,Cui Y Z,Zhang C H.2014.Genetic diversity of Broussonetia papyrifera populations in southwest China[J].Genetics and Molecular Research,13(3):7553-7563.doi: 0.4238/2014.September.12.22.

    Liu H T,Tang X,Zhang N,Li S G,Si H J.2023.Role of bZIPtranscription factors in plant salt stress[J].International Journal of Molecular Sciences,24(9):7893.doi: 10.3390/ijms24097893.

    Livak K J,Schmittgen T D.2001.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J].Methods,25(4):402-408.doi: 10.1006/meth.2001.1262.

    Ma F N,Zhou H W,Xu Y,Huang D M,Wu B,Xing W T,Chen D,Xu B Q,Song S.2023.Comprehensive analysis of bZIP transcription factors in passion fruit[J].iScience,26(4):106556.doi: 10.1016/j.isci.2023.106556.

    Ma H Z,Liu C,Li Z X,Ran Q J,Xie G N,Wang B M,Fang S,Chu J F,Zhang J R.2018.ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J].Plant Physiology,178(2):753-770.doi: 10.1104/pp.18.00436.

    Maier A T,Stehling-Sun S,Wollmann H,Demar M,Hong R L,Haubeiss S,Weigel D,Lohmann J U.2009.Dual roles of the bZIP transcription factor PERIANTHIA in the con-trol of floral architecture and homeotic gene expression[J].Development,136(10):1613-1620.doi: 10.1242/dev.033647.

    Malacarne G,Coller E,Czemmel S,Vrhovsek U,Engelen K,Goremykin V,Bogs J,Moser C.2016.The grapevine VvibZIPC22 transcription factor is involved in the regula-tion of flavonoid biosynthesis[J].Journal of Experimental Botany,67(11):3509-3522.doi: 10.1093/jxb/erw181.

    Neysanian M,Iranbakhsh A,Ahmadvand R,Oraghi Ardebili Z,Ebadi M.2020.Comparative efficacy of selenate and sele-nium nanoparticles for improving growth,productivity,fruit quality,and postharvest longevity through modifying nutrition,metabolism,and gene expression in tomato;potential benefits and risk assessment[J].PLoS One,15(12):e0244207.doi: 10.1371/journal.pone.0244207.

    Nguyen L T,Schmidt H A,von Haeseler A,Minh B Q.2015.IQ-TREE:A fast and effective stochastic algorithm for esti-mating maximum-likelihood phylogenies[J].Molecular Biology and Evolution,32(1):268-274.doi: 10.1093/mol-bev/msu300.

    Niu R Y,Yang Q L,Dong Y J,Hou Y R,Liu G W.2022.Sele-nium metabolism and regulation of immune cells in immune-associated diseases[J].Journal of Cellular Physiology,237(9):3449-3464.doi: 10.1002/jcp.30824.

    Pan F,Wu M,Hu W F,Liu R,Yan H W,Xiang Y.2019.Genome-wide identification and expression analyses of the bZIP transcription factor genes in moso bamboo(Phyllo-stachys edulis)[J].International Journal of Molecular Sciences,20(9):2203.doi: 10.3390/ijms20092203.

    Pang K L,Chin K Y.2019.Emerging anticancer potentials of selenium on osteosarcoma[J].International Journal of Molecular Sciences,20(21):5318.doi: 10.3390/ijms20215318.

    Pavlovic Z,Miletic I,Zekovic M,Nikolic M,Glibetic M.2018.Impact of selenium addition to animal feeds on human selenium status in Serbia[J].Nutrients,10(2):225.doi: 10.3390/nu10020225.

    Peñailillo J,Kuo W,Olivares G,Silva-Poblete G,PeñaAhumada B,Muñoz S,Moncada X,Chung K F,Seelen-freund D,Seelenfreund A.2017.Characterization of micro-satellite markers for Broussonetia papyrifera(Moraceae)[J].Applications in Plant Sciences,5(8):apps.1700044.doi: 10.3732/apps.1700044.

    Reddy J P,Rhim J W.2014.Characterization of bionanocom-posite films prepared with agar and paper-mulberry pulp nanocellulose[J].Carbohydrate Polymers,110:480-488.doi: 10.1016/j.carbpol.2014.04.056.

    Schomburg L.2016.Dietary selenium and human health[J].Nutrients,9(1):22.doi: 10.3390/nu9010022.

    Seong E S,Lee J G,Chung I M,Yu C Y.2019.Changes of phe-nolic compounds in LebZIP2-overexpressing transgenic plants[J].Indian Journal of Biochemistry and Biophysics,56(6):484-491.doi: 10.56042/ijbb.v56i6.29252.

    Shi Z M,Pan P J,Feng Y W,Kan Z Z,Li Z H,Wei F.2017.Environmental water chemistry and possible correlation with Kaschin-Beck Disease(KBD) in northwestern Sichuan,China[J].Environment International,99:282-292.doi: 10.1016/j.envint.2016.12.006.

    Sotoodehnia-Korani S,Iranbakhsh A,Ebadi M,Majd A,Oraghi Ardebili Z.2020.Selenium nanoparticles induced varia-tions in growth,morphology,anatomy,biochemistry,gene expression,and epigenetic DNA methylation in Capsicum annuum;an In vitro study[J].Environmental Pollution,265(PtB):114727.doi: 10.1016/j.envpol.2020.114727.

    Spengler G,Kincses A,MosolygóT,MarćM A,NovéM,Gajdács M,Sanmartín C,McNeil H E,Blair J M A,Domínguez-Álvarez E.2019.Antiviral,antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides[J].Molecules,24(23):4264.doi: 10.3390/molecules24234264.

    Wang J,Zhang J Y,Zhong Y T,Qin L Q,Li J X.2021.Sexdimorphic distribution and anti-oxidative effects of seleno-methionine and Se-methylselenocysteine supplementation[J].Journal of Food Science,86(12):5424-5438.doi: 10.1111/1750-3841.15970.

    Yao L N,Hao X Y,Cao H L,Ding C Q,Yang Y J,Wang L,Wang X C.2020.ABA-dependent bZIP transcription fac-tor,CsbZIP18,from Camellia sinensis negatively regulates freezing tolerance in Arabidopsis[J].Plant Cell Reports,39(4):553-565.doi: 10.1007/s00299-020-02512-4.

    Zeng P,Guo Z H,Xiao X Y,Zhou H,Gu J F,Liao B H.2022.Tolerance capacities of Broussonetia papyrifera to heavy metal(loid)s and its phytoremediation potential of the con-taminated soil[J].International Journal of Phytoremedia-tion,24(6):580-589.doi: 10.1080/15226514.2021.1958746.

    Zhang B Y,Feng C,Chen L,Li B Q,Zhang X L,Yang X Y.2022.Identification and functional analysis of bZIP genes in cotton response to drought stress[J].International Jour-nal of Molecular Sciences,23(23):14894.doi: 10.3390/ijms232314894.

    Zhang M,Liu Y H,Li Z X,She Z Y,Chai M N,Aslam M,He Q,Huang Y M,Chen F Q,Chen H H,Song S K,Wang BR,Cai H Y,Qin Y.2021.The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclero-tiorum and Phytophthora sojae infection in soybean[J].iScience,24(6):102642.doi: 10.1016/j.isci.2021.102642.

    Zhang Y,Gao W L,Li H T,Wang Y K,Li D K,Xue C L,Liu ZG,Liu M J,Zhao J.2020.Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.)[J].BMC Genomics,21(1):483.doi: 10.1186/s12864-020-06890-7.

    Zhao K,Chen S,Yao W J,Cheng Z H,Zhou B R,Jiang T B.2021.Genome-wide analysis and expression profile of the bZIP gene family in poplar[J].BMC Plant Biology,21(1):122.doi: 10.1186/s12870-021-02879-w.

    Zhao M J,Lv D L,Hu J C,He Y L,Wang Z,Liu X Y,Ran BK,Hu J H.2022.Hybrid Broussonetia papyrifera fer-mented feed can play a role through flavonoid extracts to increase milk production and milk fatty acid synthesis in dairy goats[J].Frontiers in Veterinary Science,9:794443.doi: 10.3389/fvets.2022.794443.

计量
  • 文章访问数:  11
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24

目录

    /

    返回文章
    返回