基于代谢组学分析鼠伤寒沙门氏菌感染对文昌鸡盲肠代谢的影响

陈胜宏, 谢尧辰, 闻晓波, 冉旭华

陈胜宏, 谢尧辰, 闻晓波, 冉旭华. 2024: 基于代谢组学分析鼠伤寒沙门氏菌感染对文昌鸡盲肠代谢的影响. 南方农业学报, 55(10): 3117-3126. DOI: 10.3969/j.issn.2095-1191.2024.10.023
引用本文: 陈胜宏, 谢尧辰, 闻晓波, 冉旭华. 2024: 基于代谢组学分析鼠伤寒沙门氏菌感染对文昌鸡盲肠代谢的影响. 南方农业学报, 55(10): 3117-3126. DOI: 10.3969/j.issn.2095-1191.2024.10.023
CHEN Sheng-hong, XIE Yao-chen, WEN Xiao-bo, RAN Xu-hua. 2024: Metabolomics-based analysis on the effects of Salmonella typhimurium infection on cecum metabolism of Wenchang chickens. Journal of Southern Agriculture, 55(10): 3117-3126. DOI: 10.3969/j.issn.2095-1191.2024.10.023
Citation: CHEN Sheng-hong, XIE Yao-chen, WEN Xiao-bo, RAN Xu-hua. 2024: Metabolomics-based analysis on the effects of Salmonella typhimurium infection on cecum metabolism of Wenchang chickens. Journal of Southern Agriculture, 55(10): 3117-3126. DOI: 10.3969/j.issn.2095-1191.2024.10.023

基于代谢组学分析鼠伤寒沙门氏菌感染对文昌鸡盲肠代谢的影响

基金项目: 

国家自然科学地区基金项目(32360878);海南省自然科学基金项目(321RC1020);海南省地方鸡产业技术体系专项(HNARS-06-G05)

详细信息
    作者简介:

    陈胜宏(1997-),https://orcid.org/0009-0006-5137-0206,研究方向为热带动物健康养殖;E-mail:chensh_1997@163.com

    通讯作者:

    冉旭华(1978-),https://orcid.org/0000-0002-3142-0206,博士,教授,主要从事动物免疫学研究工作,E-mail:ranxuhua@hainanu.edu.cn

  • 中图分类号: S858.31

Metabolomics-based analysis on the effects of Salmonella typhimurium infection on cecum metabolism of Wenchang chickens

Funds: 

Regional Project of National Natural Science Foundation of China(32360878);Hainan Natural Science Foundation(321RC1020);Hainan Local Chicken Industry Technical System Special Project (HNARS-06-G05)

  • 摘要: 【目的】 明确鼠伤寒沙门氏菌感染后文昌鸡盲肠内容物中代谢物的变化,筛选出与沙门氏菌感染高度相关的代谢物,揭示禽沙门氏菌病对文昌鸡盲肠代谢的影响,为进一步了解及防治该病提供数据支撑。【方法】 以8×109CFU/mL的鼠伤寒沙门氏菌悬液经口灌胃感染14日龄雄性文昌鸡建立禽沙门氏菌病模型,同时设健康对照组和灭活菌对照组,感染后第8 d基于代谢组学对文昌鸡盲肠内容物进行代谢物检测分析,筛选出存在显著差异的代谢物,并对差异代谢物进行KEGG通路富集分析。【结果】 从文昌鸡盲肠内容物样本共鉴定出577种代谢物,在正离子(ESI+)、负离子(ESI-)模式下鉴定到的代谢物分别为417和160种。以P<0.05且权重值(VIP)>1为筛选条件,从577种代谢物中筛选出32种差异代谢物。相对于健康对照组,感染鼠伤寒沙门组存在24种差异代谢物,灭活菌对照组存在25种差异代谢物。在感染鼠伤寒沙门氏菌组中,花生四烯酸、3-(3-羟基苯基)丙酸、D-核糖、N6-乙酰基-L-赖氨酸、鸟嘌呤核苷、邻苯二酚、黄体酮、3-甲基-L-酪氨酸和4-羟基苯乙烯等9种代谢物显著升高(P<0.05,下同),而L-苏氨酸、黄嘌呤、鸟嘌呤、次黄嘌呤、尿嘧啶和酪胺等15种代谢物显著降低,以花生四烯酸含量升高最明显,其与健康对照组相比的差异倍数为8.60;KEGG通路富集分析结果显示,24种差异代谢物富集于嘌呤代谢、ABC转运蛋白、嘧啶代谢及不饱和脂肪酸生物合成等20条通路上,其中嘌呤代谢和ABC转运蛋白2条通路的富集程度达显著水平。【结论】 鼠伤寒沙门氏菌感染能引起文昌鸡机体代谢紊乱,尤其是盲肠内容物中的花生四烯酸及其代谢产物或许是介导禽沙门氏菌性肠炎的关键物质,可作为解析沙门氏菌致病机制的切入点。
    Abstract: 【Objective】 To clarify the changes of metabolites in cecum contents of Wenchang chickens after Salmonella typhimurium infection,to screen out metabolites highly correlated with Salmonella infection,to reveal the effects of avian salmonellosis on cecum metabolism of Wenchang chickens,and to provide data support for further understanding and prevention of the disease. 【Method】 A model of avian salmonellosis was established by infecting 14-day-old male Wenchang chickens with S. typhimurium suspension of 8×109 CFU/mL by oral gavage,and a healthy control group and an inactivated bacterial control group were simultaneously established. Metabolite detection and analysis based on metabolomics was performed on the cecum contents of Wenchang chickens on the 8th d after infection,and metabolites with significant differences were screened out,and the differential metabolites were analyzed by KEGG enrichment. 【Result】 A total of 577 metabolites were identified in cecum content samples of Wenchang chickens,and the number of metabolites identified in positive ion(ESI+)mode and negative ion(ESI-)mode were 417 and 160 respectively. A total of 32 differential metabolites were screened from the 577 metabolites using P<0.05 and weight(VIP)>1 as the screening condition. Compared to the healthy control group,24 differential metabolites were present in the S. typhimurium infected group and 25 differential metabolites were present in the inactivated bacterial control group. In the group infected with S. typhimurium, 9 metabolites including arachidonic acid,3-(3-hydroxyphenyl)propionic acid,D-ribose,N6-acetyl-L-lysine,guanosine,catechol,progesterone,3-methyl-L-tyrosine and 4-hydroxystyrene exhibited significant increase(P<0.05,the same below),while 15 metabolites including L-threonine,xanthine,guanine,hypoxanthine,uracil and tyramine demonstrated significant decline. Arachidonic acid content increase was the most obvious,the its fold difference compared to the healthy control group was 8.60. KEGG pathway enrichment analysis revealed that 24 differential metabolites enriched in 20 pathways,including purine metabolism,ABC transport protein,pyrimidine metabolism and biosynthesis of unsaturated fatty acid. Of these,the purine metabolism and ABC transport protein pathways reached significant level of enrichment. 【Conclusion】 S. typhimurium infection can cause metabolic disorders in the body of Wenchang chickens. In particular,arachidonic acid and its metabolites in the contents of the cecum may be the key substances mediating avian salmonella enteritis. This can provide a perspective for th study of Salmonella pathogenesis.
  • 程佳莹,肖梦诗,任昕淼,于颖,付晓丹,牟海津. 2023. 基于转录组学分析肠道菌群发酵褐藻胶寡糖对沙门氏菌的作用机制[J]. 河南农业科学,52(6): 139-149.[Cheng J Y,Xiao M S,Ren X M,Yu Y,Fu X D,Mou H J. 2023.

    Mechanism of alginate oligosaccharides fermented with gut microbiota inoculum against Salmonella enterica by transcriptomic analysis[J]. Journal of Henan Agricultural Sciences,52(6): 139-149.] doi:10.15933/j.cnki.1004-3268. 2023.06.015.

    崔宏晓. 2022. 沙门氏菌外膜囊泡对鸡单核吞噬细胞免疫激活的作用研究[D]. 杨凌:西北农林科技大学.[Cui H X. 2022. Immune activation of Salmonella outer membrane vesicles on chicken mononuclear phagocytes[D]. Yangling:Northwest A&F University.] doi:10.27409/d. cnki.gxbnu.2022.000088.
    李惠龙. 2020. 肠炎沙门氏菌感染后不同时间点鸡盲肠组织转录组分析[D]. 泰安:山东农业大学.[Li H L. 2020.Temporal transcriptome following Salmonella enteritidis infection in chicken cecum[D]. Tai'an:Shandong Agricultural University.] doi: 10.27277/d.cnki.gsdnu.2020.000536.
    李萍,苏佳丽,杜欣军,王硕. 2022. 大豆豆粕及赤小豆膳食补充对鼠伤寒沙门氏菌侵染小鼠肠道炎症的影响[J]. 天津科技大学学报,37(3): 12-20.[Li P,Su J L,Du X J,Wang S. 2022. Effects of dietary supplementation of soybean and red bean on intestinal inflammation in mice infected with Salmonella enterica serotype Typhimurium[J]. Journal of Tianjing University of Science & Technology,37(3): 12-20.] doi: 10.13364/j.issn.1672-6510.20210302.
    殷斌,隽昌宁,秦雨,钟诚,赵增成,黄中利,沈涛,周慧爽,郑乾坤,林树乾. 2023. 基于系统生物学分析探究热应激诱导鸡肠道损伤的作用机制[J]. 南方农业学报,54(4): 969-981.[Yin B,Juan C N,Qin Y,Zhong C,Zhao Z C,Huang Z L,Shen T,Zhou H S,Zheng Q K,Lin S Q. 2023.Exploring the mechanism of heat stress-induced intestinal injury in chickens based on systems biology analysis[J].Journal of Southern Agriculture,54(4): 969-981.] doi:10. 3969/j.issn.2095-1191.2023.04.001.
    袁晓慧,薛寒,张云增,潘志明,焦新安. 2020. 肠道菌群代谢产物在鼠伤寒沙门菌感染中的作用研究进展[J]. 中国微生态学杂志,32(8): 966-970.[Yuan X H,Xue H,Zhang Y Z,Pan Z M,Jiao X A. 2020. The role of gut microbiota metabolites in Salmonella enterica serovar Typhimurium infection:Research progress[J]. Chinese Journal of Microecology, 32(8): 966-970.] doi:10.13381/j.cnki.cjm.20200 8021.
    张春善,蒋燕侠,王博,王汝都,申红星. 2009. 铜、维生素A及互作效应对肉仔鸡肠壁组织结构、肠道微生物和血清生长激素的影响[J]. 中国农业科学,42(4): 1485-1493.[Zhang C S,Jiang Y X,Wang B,Wang R D,Shen H X. 2009. Influence of various dietary copper and vitamin A levels on intestinal wall structure,cecal gut flora and GH in serum in broilers[J]. Scientia Agricultura Sinica,42(4): 1485-1493.] doi: 10.3864/j.issn.0578-1752.2009.04.046.
    张璐. 2021. 鸡源沙门氏菌血清型、耐药性及分子流行病学研究[D]. 北京:中国兽医药品监察所.[Zhang L. 2021.Study on serotypes,antimicrobial resistance and molecular epidemiology of Salmonella spp. from chicken[D]. Beijing:China Institute of Veterinary Drug Control.] doi:10. 27645/d.cnki.gzsys.2021.000004.
    张珍,施开创,王孝德,黎宗强,尹彦文,屈素洁,陆文俊. 2019. 2015-2017 年广西鸡源沙门氏菌耐药性与致病性的相关性分析[J]. 南方农业学报,50(10): 2350-2358.[Zhang Z,Shi K C,Wang X D,Li Z Q,Yin Y W,Qu S J, Lu W J. 2019. Correlation between antimicrobial resistance and pathogenicity of Salmonella from chicken in Guangxi during 2015-2017[J]. Journal of Southern Agriculture, 50(10): 2350-2358.] doi:10.3969/j.issn.2095-1191. 2019.10.28.

    Abdelrazig S,Safo L,Rance G A,Fay M W,Theodosiou E,Topham P D,Kim D H,Fernández-Castané A. 2020. Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling[J].RSC Advances,10(54): 32548-32560. doi:10.1039/d0ra 05326k.

    Ajuebor M N,Singh A,Wallace J L. 2000. Cyclooxygenase-2-derived prostaglandin D2 is an early anti-inflammatory signal in experimental colitis[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,279(1): G238-G244. doi: 10.1152/ajpgi.2000.279.1.G238.

    Antunes L C M,Arena E T,Menendez A,Han J,Ferreira R B R,Buckner M M C,Lolić P,Madilao L L,Bohlmann J, Borchers C H,Brett Finlay B. 2011. Impact of Salmonella infection on host hormone metabolism revealed by metabolomics[J]. Infection and Immunity,79(4): 1759-1769. doi: 10.1128/iai.01373-10.

    Aoki T,Narumiya S. 2017. Prostaglandin E2-EP2 signaling as a node of chronic inflammation in the colon tumor microenvironment[J]. Inflammation and Regeneration,37:4. doi: 10.1186/s41232-017-0036-7.

    Berghof T V L,Matthijs M G R,Arts J A J,Bovenhuis H,Dwars R M,van der Poel J J,Visker M H P W,Parmentier H K. 2019. Selective breeding for high natural antibody level increases resistance to avian pathogenic Escherichia coli (APEC) in chickens[J]. Developmental & Comparative Immunology,93:45-57. doi: 10.1016/j.dci.2018.12.007.

    Bjerrum L,Engberg R M,Leser T D,Jensen B B,Finster K,Pedersen K. 2006. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques[J]. Poultry Science, 85(7): 1151-1164. doi: 10.1093/ps/85.7.1151.

    Cariou N,Christensen H,Salandre O,Albaric O,Bisgaard M,Malher X. 2013. Genital form of pasteurellosis in breeding turkeys infected during artificial insemination and isolation of an unusual strain of Pasteurella multocida[J]. Avian Diseases,57(3): 693-697. doi: 10.1637/10471-121812-Case.1.

    Ermis E,Nargis T,Webster K,Tersey S A,Anderson R M,Mirmira R G. 2024. Leukotriene B4 receptor 2 governs macrophage migration during tissue inflammation[J]. Journal of Biological Chemistry,300(1): 105561. doi: 10.1016/j.jbc.2023.105561.

    Gutiérrez S,Fischer J,Ganesan R,Hos N J,Cildir G,Wolke M,Pessia A,Frommolt P,Desiderio V,Velagapudi V,Robinson N. 2021. Salmonella typhimurium impairs glycolysismediated acidification of phagosomes to evade macrophage defense[J]. PLoS Pathogens,17(9): e1009943. doi: 10.1371/journal.ppat.1009943.

    Hu J P,Wang C K,Huang X Y,Yi S L,Pan S,Zhang Y T,Yuan G X,Cao Q F,Ye X S,Li H. 2021. Gut microbiotamediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling[J].Cell Reports,36(12): 109726. doi:10.1016/j.celrep.2021. 109726.

    Iizuka Y,Okuno T,Saeki K,Uozaki H,Okada S,Misaka T,Sato T,Toh H,Fukayama M,Takeda N,Kita Y,Shimizu T,Nakamura M,Yokomizo T. 2010. Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis[J]. FASEB Journal,24(12): 4678-4690. doi: 10.1096/fj.10-165050.

    Jiang G L,Nieves A,Im W B,Old D W,Dinh D T,Wheeler L. 2007. The prevention of colitis by E prostanoid receptor 4 agonist through enhancement of epithelium survival and regeneration[J]. The Journal of Pharmacology and Experimental Therapeutics,320(1): 22-28. doi:10.1124/jpet.106. 111146.

    Kabashima K,Saji T,Murata T,Nagamachi M,Matsuoka T,Segi E,Tsuboi K,Sugimoto Y,Kobayashi T,Miyachi Y,Ichikawa A,Narumiya S. 2002. The prostaglandin receptor EP4 suppresses colitis,mucosal damage and CD4 cell activation in the gut[J]. The Journal of Clinical Investigation, 109(7): 883-893. doi: 10.1172/jci14459.

    Kawahara K,Hohjoh H,Inazumi T,Tsuchiya S,Sugimoto Y. 2015. Prostaglandin E2-induced inflammation:Relevance of prostaglandin E receptors[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids,1851(4): 414-421. doi: 10.1016/j.bbalip.2014.07.008.

    Korbecki J,Bobiński R,Dutka M. 2019. Self-regulation of the inflammatory response by peroxisome proliferatoractivated receptors[J]. Inflammation Research,68(6): 443-458. doi: 10.1007/s00011-019-01231-1.

    Lee M,Hosseindoust A,Oh S M,Ko H S,Cho E S,Sa S,Kim Y I,Choi J W,Kim J S. 2021. Impact of an anti-Salmonella typhimurium Bacteriophage on intestinal microbiota and immunity status of laying hens[J]. Journal of Animal Physiology and Animal Nutrition,105(5): 952-959. doi:10. 1111/jpn.13424.

    Levy M,Blacher E,Elinav E. 2017. Microbiome,metabolites and host immunity[J]. Current Opinion in Microbiology, 35:8-15. doi: 10.1016/j.mib.2016.10.003.

    Marouf S,Ibrahim H M,El-Naggar M S,Swelum A A,Alqhtani A H,El-Saadony M T,El-Tarabily K A,Salem H M. 2022. Inactivated pentavalent vaccine against mycoplasmosis and salmonellosis for chickens[J]. Poultry Science, 101(11): 102139. doi: 10.1016/j.psj.2022.102139.

    Michael O S,Dibia C L,Soetan O A,Adeyanju O A,Oyewole A L,Badmus O O,Adetunji C O,Soladoye A O. 2020.Sodium acetate prevents nicotine-induced cardiorenal dysmetabolism through uric acid/creatine kinase-dependent pathway[J]. Life Sciences,257:118127. doi: 10.1016/j.lfs.2020.118127.

    Monk J M,Turk H F,Fan Y Y,Callaway E,Weeks B,Yang P Y,McMurray D N,Chapkin R S. 2014. Antagonizing arachidonic acid-derived eicosanoids reduces inflammatory Th17 and Th1 cell-mediated inflammation and colitis severity[J]. Mediators of Inflammation,2014:917149. doi: 10.1155/2014/917149.

    Navarro-Reig M,Jaumot J,García-Reiriz A,Tauler R. 2015.Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCRALS data analysis strategies[J]. Analytical and Bioanalytical Chemistry,407(29): 8835-8847. doi: 10.1007/s00216-015-9042-2.

    Ogata H,Goto S,Sato K,Fujibuchi W,Bono H,Kanehisa M. 1999. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research,27(1): 29-34. doi: 10.1093/nar/27.1.29.

    Ohradanova-Repic A,Machacek C,Charvet C,Lager F,Le Roux D,Platzer R,Leksa V,Mitulovic G,Burkard T R, Zlabinger G J,Fischer M B,Feuillet V,Renault G,Blüml S,Benko M,Suchanek M,Huppa J B,Matsuyama T, Cavaco-Paulo A,Bismuth G,Stockinger H. 2018. Extracellular purine metabolism is the switchboard of immunosuppressive macrophages and a novel target to treat diseases with macrophage imbalances[J]. Frontiers in Immunology, 9:852. doi: 10.3389/fimmu.2018.00852.

    Pang Z Q,Chong J,Li S Z,Xia J G. 2020. MetaboAnalystR 3.0:Toward an optimized workflow for global metabolomics[J]. Metabolites,10(5): 186. doi:10.3390/metabo10 050186.

    Postler T S,Ghosh S. 2017. Understanding the holobiont:How microbial metabolites affect human health and shape the immune system[J]. Cell Metabolism,26(1): 110-130. doi: 10.1016/j.cmet.2017.05.008.

    Ramtahal M A,Amoako D G,Akebe A L K,Somboro A M,Bester L A,Essack S Y. 2022. A public health insight into Salmonella in poultry in Africa:A review of the past decade:2010-2020[J]. Microbial Drug Resistance,28(6): 710-733. doi: 10.1089/mdr.2021.0384.

    Ren Y L,Shi X Y,Mu J,Liu S Y,Qian X,Pei W L,Ni S H,Zhang Z D,Li L,Zhang Z. 2024. Chronic exposure to parabens promotes non-alcoholic fatty liver disease in association with the changes of the gut microbiota and lipid metabolism[J]. Food & Function,15(3): 1562-1574. doi: 10.1039/d3fo04347a.

    Saad N J,Lynch V D,Antillón M,Yang C G,Crump J A,Pitzer V E. 2018. Seasonal dynamics of typhoid and paratyphoid fever[J]. Scientific Reports,8(1): 6870. doi: 10.1038/s41598-018-25234-w.

    Schrimpe-Rutledge A C,Codreanu S G,Sherrod S D,McLean J A. 2016. Untargeted metabolomics strategies-challenges and emerging directions[J]. Journal of the American Society for Mass Spectrometry,27(12): 1897-1905. doi:10. 1007/s13361-016-1469-y.

    Serino M. 2018. Molecular paths linking metabolic diseases,gut microbiota dysbiosis and enterobacteria infections[J].Journal of Molecular Biology,430(5): 581-590. doi:10. 1016/j.jmb.2018.01.010.

    Smith C A,Want E J,O'Maille G,Abagyan R,Siuzdak G. 2006. XCMS:Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment,matching,and identification[J]. Analytical Chemistry,78(3): 779-787. doi: 10.1021/ac051437y.

    Sokol H,Pigneur B,Watterlot L,Lakhdari O,Bermúdez-Humarán L G,Gratadoux J J,Blugeon S,Bridonneau C, Furet J P,Corthier G,Grangette C,Vasquez N,Pochart P,Trugnan G,Thomas G,Blottière H M,Doré J,Marteau P,Seksik P,Langella P. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J]. Proceedings of the National Academy of Sciences of the United States of America,105(43): 16731-16736. doi:10. 1073/pnas.0804812105.

    Sontag T J,Reardon C A,Getz G S. 2010. ABC transporters:Lipid transport and inflammation[J]. Current Opinion in Lipidology,21(2): 159-160. doi:10.1097/MOL.0b013e32 83376910.

    Stanley D,Hughes R J,Moore R J. 2014. Microbiota of the chicken gastrointestinal tract:Influence on health,productivity and disease[J]. Applied Microbiology and Biotechnology, 98:4301-4310. doi: 10.1007/s00253-014-5646-2.

    Stenson W F. 2014. The universe of arachidonic acid metabolites in inflammatory bowel disease:Can we tell the good from the bad?[J]. Current Opinion in Gastroenterology,30(4): 347-351. doi: 10.1097/mog.0000000000000075.

    Sturm E M,Radnai B,Jandl K,Stančić A,Parzmair G P, Högenauer C,Kump P,Wenzl H,Petritsch W,Pieber T R, Schuligoi R,Marsche G,Ferreirós N,Heinemann A, Schicho R. 2014. Opposing roles of prostaglandin D2 receptors in ulcerative colitis[J]. The Journal of Immunology, 193(2): 827-839. doi: 10.4049/jimmunol.1303484.

    Sun L L,Xie C,Wang G,Wu Y,Wu Q,Wang X M,Liu J, Deng Y Y,Xia J L,Chen B,Zhang S Y,Yun C Y,Lian G, Zhang X J,Zhang H,Bisson W H,Shi J M,Gao X X,Ge P P,Liu C H,Krausz K W,Nichols R G,Cai J W,Rimal B, Patterson A D,Wang X,Gonzalez F J,Jiang C T. 2018.Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nature Medicine,24(12): 1919-1929. doi: 10.1038/s41591-018-0222-4.

    Thévenot E A,Roux A,Xu Y,Ezan E,Junot C. 2015. Analysis of the human adult urinary metabolome variations with age,body mass index,and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses[J]. Journal of Proteome Research,14(8): 3322-3335. doi: 10.1021/acs.jproteome.5b00354.

    Turroni S,Fiori J,Rampelli S,Schnorr S L,Consolandi C,Barone M,Biagi E,Fanelli F,Mezzullo M,Crittenden A N, Henry A G,Brigidi P,Candela M. 2016. Fecal metabolome of the Hadza hunter-gatherers:A host-microbiome integrative view[J]. Scientific Reports,6:32826. doi:10. 1038/srep32826.

    Wang X L,Niu L L,Wang Y X,Zhan S Y,Wang L J,Dai D H, Cao J X,Guo J Z,Li L,Zhang H P,Zhong T. 2023. Combining 16S rRNA sequencing and metabolomics data to decipher the interactions between gut microbiota,host immunity,and metabolites in diarrheic young small ruminants[J]. International Journal of Molecular Sciences,24(14): 11423. doi: 10.3390/ijms241411423.

    Want E J,Masson P,Michopoulos F,Wilson I D,Theodoridis G,Plumb R S,Shockcor J,Loftus N,Holmes E,Nicholson J K. 2013. Global metabolic profiling of animal and human tissues via UPLC-MS[J]. Nature Protocols,8(1): 17-32. doi: 10.1038/nprot.2012.135.

    Xia W R,Khan I,Li X A,Huang G X,Yu Z L,Leong W K, Han R X,Ho L T,Wendy Hsiao W L. 2020. Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers,strengthening the epithelial tight junction complex and immune responses[J]. Pharmacological Research,159:104809. doi:10.1016/j.phrs.2020. 104809.

    Yokomizo T,Nakamura M,Shimizu T. 2018. Leukotriene receptors as potential therapeutic targets[J]. Journal of Clinical Investigation,128(7): 2691-2701. doi: 10.1172/jci97946.

    Zelena E,Dunn W B,Broadhurst D,Francis-McIntyre S,Carroll K M,Begley P,O'Hagan S,Knowles J D,Halsall A, Consortium H,Wilson I D,Kell D B. 2009. Development of a robust and repeatable UPLC-MS method for the longterm metabolomic study of human serum[J]. Analytical Chemistry,81(4): 1357-1364. doi: 10.1021/ac8019366.

    Zhang Y R,Liu Y X,Sun J,Zhang W,Guo Z,Ma Q. 2023. Arachidonic acid metabolism in health and disease[J]. Med-Comm,4(5): e363. doi: 10.1002/mco2.363.

    Zhou J F,Lai W M,Yang W J,Pan J P,Shen H,Cai Y Y,Yang C X,Ma N J,Zhang Y,Zhang R,Xie X,Dong Z J,Gao Y, Du C S. 2018. BLT1 in dendritic cells promotes Th1/Th17

    differentiation and its deficiency ameliorates TNBSinduced colitis[J]. Cellular & Molecular Immunology,15(12): 1047-1056. doi: 10.1038/s41423-018-0030-2.

    Zhu J X,Liu W B,Bian Z,Ma Y M,Kang Z X,Jin J H,Li X Y,Ge S Y,Hao Y L,Zhang H X,Xie Y H. 2023. Lactobacillus plantarum Zhang-LL inhibits colitis-related tumorigenesis by regulating arachidonic acid metabolism and CD22-mediated B-cell receptor regulation[J]. Nutrients, 15(21): 4512. doi: 10.3390/nu15214512.

计量
  • 文章访问数:  28
  • HTML全文浏览量:  2
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-27

目录

    /

    返回文章
    返回