Prokaryotic expression and bioactivity analysis of the fusion insecticidal protein of Bacillus thuringiensis Cry1A.301-Vip3A
-
摘要: 【目的】 对苏云金芽孢杆菌(Bacillus thuringiensis,Bt)的杀虫蛋白基因(Cry1A.301和Vip3A)进行原核融合表达及生物活性分析,为玉米抗虫基因资源发掘和品种创制提供科学参考。【方法】 利用连接肽构建不同杀虫机理的Cry1A.301和Vip3A融合基因,构建其原核表达载体,在大肠杆菌中进行诱导表达,对融合蛋白进行理化性质和结构域预测分析及定量检测,并采用人工饲料混合饲喂法测定融合蛋白对亚洲玉米螟(Ostrinia furnacalis)、棉铃虫(Helicoverpa armigera)和草地贪夜蛾(Spodoptera frugiperda)的杀虫活性。【结果】 构建的融合基因基本骨架为5'-Cry1A.301-Vip3A-3',中间由编码连接肽(8个氨基酸)的核苷酸序列(TCCACCTGCTCCACCTGCTCCACC)组装而成,经诱导表达形成融合蛋白Cry1A.301-Vip3A。该融合蛋白含有1409个氨基酸,分子量约为157 kD,为稳定的酸性蛋白,包含Cry1A.301和Vip3A蛋白家族的4个特征结构域。Cry1A.301-Vip3A融合蛋白在大肠杆菌BL21(DE3)细胞中成功表达,且Cry1A.301和Vip3A蛋白的表达量无显著差异(P>0.05,下同)。饲喂Cry1A.301-Vip3A融合蛋白7 d后,亚洲玉米螟、草地贪夜蛾和棉铃虫幼虫校正死亡率达100.00%。Cry1A.301-Vip3A融合蛋白与Cry1A.301蛋白对亚洲玉米螟的杀虫活性无显著差异,均显著高于Vip3A蛋白(P<0.05,下同)。Cry1A.301-Vip3A融合蛋白、Vip3A蛋白和Cry1A.301蛋白对棉铃虫的杀虫活性无显著差异。Cry1A.301-Vip3A融合蛋白和Vip3A蛋白对草地贪夜蛾的杀虫活性无显著差异,均显著高于Cry1A.301蛋白。【结论】 原核表达的Cry1A.301-Vip3A融合蛋白结构稳定,对亚洲玉米螟、棉铃虫和草地贪夜蛾均具有较好的杀虫活性。
-
关键词:
- 苏云金芽孢杆菌(Bt) /
- 融合蛋白 /
- 原核表达 /
- 生物活性
Abstract: 【Objective】 To conduct prokaryotic fusion expression and bioactivity analysis on the insecticidal protein genes(Cry1A.301 and Vip3A)of Bacillus thuringiensis(Bt),so as to provide scientific reference for the exploration of insect-resistant gene resources and the creation of maize varieties. 【Method】 Utilized the connecting peptides to construct the fusion genes of Cry1A.301 and Vip3A with different insecticidal mechanisms. Then,constructed their prokaryotic expression vectors and induced expression in Escherichia coli. Prediction analysis on the physicochemical properties and domains of the fusion proteins as well as quantitative detection was conducted. Moreover,the insecticidal activities of the fusion proteins against Ostrinia furnacalis,Helicoverpa armigera and Spodoptera frugiperda were detected by the artificial diet mixed feeding method. 【Result】 The basic framework of the constructed fusion gene was 5'-Cry1A. 301-Vip3A-3',with the nucleotide sequence(TCCACCTGCTCCACCTGCTCCACC)encoding the connecting peptide(8 amino acids) assembled in the middle. Through induced expression,the fusion protein Cry1A.301-Vip3A was formed. This fusion protein contained 1409 amino acids,with a molecular weight of approximately 157 kD. It was a stable acidic protein and encompassed 4 characteristic domains of the Cry1A.301 and Vip3A protein families. The fusion protein Cry1A.301-Vip3A could be successfully expressed in E. coli strain BL21(DE3),and there was no significant difference in the expression levels of Cry1A.301 and Vip3A proteins(P>0.05,the same below). After feeding the fusion protein Cry1A.301-Vip3A for 7 d,the corrected mortality rates of O. furnacalis,H. armigera and S. frugiperda reached 100.00%. The insecticidal effect of the fusion protein Cry1A.301-Vip3A on O. furnacalis was not significantly different from that of the Cry1A.301 protein,but both were significantly higher than that of the Vip3A protein(P<0.05,the same below). The insecticidal activity of the fusion protein Cry1A.301-Vip3A on H. armigera was not significantly different from those of Vip3A protein and Cry1A.301 protein. The insecticidal activity of the fusion protein Cry1A.301-Vip3A on S. frugiperda was not significantly different from that of Vip3A protein,but was significantly higher than that of Cry1A.301 protein. 【Conclusion】 The Cry1A.301-Vip3A fusion protein expressed in prokaryotes has a stable structure and exhibits good insecticidal activities against O. furnacalis,H. armigera and S. frugiperda. -
-
郭小琴,钱红梅,郭俊佩,史宗勇,高建华,王兴春. 2019.Cry1Ia 和Cry2Ab 融合蛋白的表达[J]. 山西农业大学学报(自然科学版), 39(3): 101-105.[Guo X Q,Qian H M, Guo P J,Shi Z Y,Gao J H,Wang X C. 2019. Expression of the fusion protein of Cry1Ia and Cry2Ab genes[J]. Journal of Shanxi Agriculture University (Natural Science Edition), 39(3): 101-105.] doi:10.13842/j.cnki.issn1671-8151. 201811048. 胡小华,王振营,何康来,解海翠,王月琴. 2023. Cry 类和Vip3Aa 类Bt 杀虫蛋白对亚洲玉米螟的毒力和增效作用[J]. 植物保护,49(2): 310-315.[Hu X H,Wang Z Y,He K L,Xie H C,Wang Y Q. 2023. Insecticidal activity and synergism of combinations of Bacillus thuringiensis Cry and Vip3Aa against Ostrinia furnacalis[J]. Plant Protection, 49(2): 310-315.] doi: 10.16688/j.zwbh.2021671. 李国平,姬婷婕,孙小旭,姜玉英,吴孔明,封洪强. 2019. 入侵云南草地贪夜蛾种群对5 种常用Bt 蛋白的敏感性评价[J]. 植物保护,45(3): 15-20.[Li G P,Ji T J,Sun X X, Jiang Y Y,Wu K M,Feng H Q. 2019. Susceptibility evaluation of invaded Spodoptera frugiperda population in Yunnan Province to five Bt proteins[J]. Plant Protection,45(3): 15-20.] doi: 10.16688/j.zwbh.2019201. 刘晓贝,白树雄,王振营,王月琴,王勤英,何康来. 2020. 转cry1Ab/cry1Ac 基因玉米Cry1Ab/Cry1Ac 融合蛋白表达及对亚洲玉米螟的室内杀虫效果[J]. 昆虫学报,63(10): 1201-1206.[Liu X B,Bai S X,Wang Z Y,Wang Y Q, Wang Q Y,He K L. 2020. Expression of Cry1Ab/Cry1Ac fusion protein in the transgenic cry1Ab/cry1Ac maize and its control efficacy against the Asian corn borer,Ostrinia furnacalis (Lepidoptera:Crambidae), in the laboratory[J]. Acta Entomologica Sinica,63(10): 1201-1206.] doi:10. 16380/j.kcxb.2020.10.005. 孙鹤. 2012. 连接肽2A和LP4/2A 在玉米中的剪切分析及抗虫耐除草剂转基因玉米的获得[D]. 北京:中国农业科学院.[Sun H. 2012. Analysis of the linker peptides 2A and LP4/2A in maize and generation of transgenic maize with insect resistance and glyphosate tolerance[D]. Beijing:Chinese Academy of Agrieultural Sciences.] 王慧,杨小艳,翁建峰,宋新元,王大铭,王振华,李新海. 2014. 抗玉米螟基因Cry1A.301 原核表达和玉米遗传转化[J]. 作物杂志,(2): 34-38.[Wang H,Yang X Y,Weng J F,Song X Y,Wang D M,Wang Z H,Li X H. 2014. Prokaryotic expression and genetic transformation of corn borer resistance gene Cry1A.301 in maize[J]. Crops,(2): 34-38.] doi: 10.16035/j.issn.1001-7283.2014.02.015. 王胜. 2012. Cry1Aa-CpTI 融合蛋白的原核表达及其对斜纹夜蛾杀虫活性研究[D]. 海口:海南大学.[Wang S. 2012.Prokaryotic expression of Cry1Aa-CpTI fusion protein and its litura insecticidal activity toward Prodenia litura Fabricius[D]. Haikou:Hainan University.] 王月琴,何康来,王振营. 2019. 靶标害虫对Bt 玉米的抗性发展和治理策略[J]. 应用昆虫学报,56(1): 12-23.[Wang Y Q,He K L,Wang Z Y. 2019. Evolution of resistance to transgenic Bacillus thuringiensis maize in pest insects and a strategy for managing this[J]. Chinese Journal of Applied Entomology,56(1): 12-23.] doi:10.7679/j.issn.2095-1353. 2019.01.002. 武东亮,崔洪志,郭三堆. 2001. 融合杀虫基因植物表达载体的构建及转基因烟草的获得[J]. 中国农业科学,34(5): 465-468.[Wu D L,Cui H Z,Guo S D. 2001. Construction of plant expression vector harboring a fused insecticidal gene and development of transgenic tobacco plants[J]. Scientia Agricultura Sinica,34(5): 465-468.] doi: 10.3321/j.issn:0578-1752.2001.05.006. 武东亮. 2000. 融合杀虫基因的分子设计、构建及表达研究[D]. 北京:中国农业科学院.[Wu D L. 2000. Molecular design,construction and expression of a fused insecticidal gene[D]. Beijing:Chinese Academy of Agrieultural Sciences.] 徐宁. 2007. 苏云金芽孢杆菌营养期杀虫蛋白(Vip3) 突变体的杀虫活性及其对胰蛋白酶的敏感性[D]. 杭州:浙江大学.[Xu N. 2007. Insecticidal activity and trypsin sensitivity of Bacillus thuringiensis Vip3 mutant proteins[D]. Hangzhou:Zhejiang University.] 许超. 2018. 一种Bt 基因融合策略在治理害虫对转基因玉米和水稻抗性中的应用[D]. 杭州:浙江大学.[Xu C. 2018.A Bt fusion strategy of two Bt toxins with different modes of action for insect resistance management in transgenic corn and rice[D]. Hangzhou:Zhejiang University.] 袁淼. 2010. 融合基因cry2Aa-gna 克隆及表达的研究[D]. 武汉:华中农业大学.[Yuan M. 2010. Study on cloning and expression of the fusion gene cry2Aa-gna[D]. Wuhan:Huazhong Agricuture University.] 岳润清,李文兰,孟昭东. 2024. 转基因抗虫耐除草剂玉米自交系LG11 的获得及抗性分析[J]. 作物学报,50(1): 89-99.[Yue R Q,Li W L,Meng Z D. 2024. Acquisition and resistance analysis of transgenic maize inbred line LG11 with insect and herbicide resistance[J]. Acta Agronomica Sinica,50(1): 89-99.] doi: 10.3724/SP.J.1006.2024.33016. 赵启超. 2015. 基因连接法和2A策略在水稻Bt 基因堆叠中的应用[D]. 杭州:浙江大学.[Zhao Q C. 2015. Bt gene stacking in rice with linked effect genes and 2A polycistronic transgene[D]. Hangzhou:Zhejiang University.] Alcantara E,Estrada A,Alpuerto V,Head G. 2011. Monitoring Cry1Ab susceptibility in Asian corn borer(Lepidoptera:Crambidae) on Bt corn in the Philippines[J]. Crop Protection, 30(5): 554-559. doi: 10.1016/j.cropro.2010.12.019.
Bernardi O,Bernardi D,Horikoshi R J,Okuma D M,Miraldo L L,Fatoretto J,Medeiros F C,Burd T,Omoto C. 2016.Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda[J]. Pest Management Science,72(9): 1794-1802. doi: 10.1002/ps.4223.
Bohorova N,Frutos R,Royer M,Estañol P,Pacheco M, Rascón Q,McLean S,Hoisington D. 2001. Novel synthetic Bacillus thuringiensis Cry1B gene and the Cry1Bcry1Ab translational fusion confer resistance to southwestern corn borer,sugarcane borer and fall armyworm in transgenic tropical maize[J]. Theoretical and Applied Genetics, 103:817-826. doi: 10.1007/s001220100686.
Camargo A M,Andow D A,Castañera P,Farinós G P. 2018.First detection of a Sesamia nonagrioides resistance allele to Bt maize in Europe[J]. Science Report,8(1): 1-7. doi: 10.1038/s41598-018-21943-4.
Cao J,Zhao J Z,Tang J D,Shelton A,Earle E. 2002. Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins[J]. Theoretical and Applied Genetics,105(2-3): 258-264.doi: 10.1007/s00122-002-0942-0.
Chakroun M,Banyuls N,Bel Y,Escriche B,Ferré J. 2016. Bacterial vegetative insecticidal proteins(Vip) from entomopathogenic bacteria[J]. Microbiology and Molecular Biology Reviews,80(2): 329-350. doi:10.1128/MMBR. 00060-15.
Chakroun M,Bel Y,Caccia S,Abdelkefi-Mesrati L,Escriche B,Ferré J. 2012. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein[J]. Journal of Invertebrate Pathology,110(3): 334-339. doi: 10.1016/j.jip.2012.03.021.
Crespo A L B,Spencer T A,Tan S Y,Siegfried B D. 2010. Fitness costs of Cry1Ab resistance in a field-derived strain of Ostrinia nubilalis(Lepidoptera:Crambidae) [J]. Journal of Economic Entomology,103(4): 1386-1393. doi: 10.1603/ec09158.
Donovan W P,Donovan J C,Engleman J T. 2001. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua[J]. Journal of Invertebrate Pathology, 78(1): 45-51. doi: 10.1006/jipa.2001.5037.
Duan D M,Fan K L,Zhang D X,Tan S G, Liang M F, Liu Y, Zhang J L, Zhang P H, Liu W, Qiu X G, Kobinger G P, Gao G F, Yan X Y. 2015. Nanozyme-strip for rapid local diagnosis of Ebola[J]. Biosensors and Bioelectronics,74:134-141. doi: 10.1016/j.bios.2015.05.025.
Estruch J J,Warren G W,Mullins M A,Nye G J,Craig J A, Koziel M G. 1996. Vip3A,a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J]. Proceedings of the National Academy of Sciences of the United States of America,93(11): 5389-5394. doi:10.1073/pnas.93.11. 5389.
Gomis-Cebolla J,Wang Y Q,Quan Y D,He K L,Walsh T, James B,Downes S,Kain W,Wang P,Leonard K,Morgan T,Oppert B,Ferré J. 2018. Analysis of cross-resistance to Vip3 proteins in eight insect colonies,from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins[J]. Journal of Invertebrate Pathology,155:64-70. doi: 10.1016/j.jip.2018.05.004.
Graser G,Walters F S,Burns A,Sauve A,Raybould A. 2017. A general approach to test for interaction among mixtures of insecticidal proteins which target different orders of insect pests[J]. Journal of Insect Science,17(2): 39. doi:10. 1093/jisesa/iex003.
Grimi D A,Parody B,Ramos M L,Machado M,Ocampo F, Willse A,Martinelli S,Head G. 2018. Field-evolved resistance to Bt maize in sugarcane borer (Diatraea saccharalis) in Argentina[J]. Pest Management Science,74(4): 905-913. doi: 10.1002/ps.4783.
Huang F N,Ghimire M N,Leonard B R,Daves C,Levy R, Baldwin J. 2012. Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis(Lepidoptera:Crambidae) [J]. GM Crops & Food,3(3): 245-254. doi: 10.4161/gmcr.20539.
Huang J K,Rozelle S,Pray C E,Wang Q F. 2002. Plant biotechnology in China[J]. Science,295(5555): 674-677.doi: 10.1126/science.1067226.
Jha S,Chattoo B B. 2009. Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice[J]. Rice,2(4): 143-154. doi: 10.1007/s12284-009-9030-2.
Lee M K,Walters F S,Hart H,Palekar N,Chen J S. 2003. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin[J]. Applied and Environmental Microbiology, 69(8): 4648-4657. doi:10.1128/AEM.69.8.4648-4657. 2003.
Liu W X,Liu X R,Liu C,Zhang Z,Jin W J. 2020. Development of a sensitive monoclonal antibody-based sandwich ELISA to detect Vip3Aa in genetically modified crops[J]. Biotechnology Letters,42(8): 1467-1478. doi:10. 1007/s10529-020-02854-9.
Margarit E,Reggiardo M I,Vallejos R H,Permingeat H R. 2006. Detection of Bt transgenic maize in foodstuffs[J]. Food Research International,39(2): 250-255. doi: 10.1016/j.foodres.2005.07.013.
Pickett B R,Gulzar A,Ferré J,Wright D J. 2017. Bacillus thuringiensis Vip3Aa toxin resistance in Heliothis virescens(Lepidoptera:Noctuidae) [J]. Applied and Environ Microbiol,83(9): e03506-e03516. doi:10.1128/AEM. 03506-16.
Pray C E,Huang J K,Hu R F,Rozelle S. 2002. Five years of Bt cotton in China-The benefits continue[J]. The Plant Journal, 31(4): 423-430. doi:10.1046/j.1365-313X.2002.014 01.x.
Rose M,Erica M,Cristina M,Paulo Q,Lilian P,Marcelo S C, Helio M,Isabella G,Joseane S,Mario S,Alejandra B, Luis J J. 2015. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modifed Bt toxins[J]. PLoS One,10(4): e0119544. doi: 10.1371/journal.pone.0119544.
Sayyed A H,Roxani G,Ibiza-Palacios M S,Escriche B,Wright D J,Crickmore N. 2005. Common,but complex,mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac[J]. Applied and Environmental Microbiology,71(11): 6863-6869. doi:10.1128/AEM. 71.11.6863-6869.2005.
Storer N P,Kubiszak M E,King J E,Thompson G D,Santos A C. 2012. Status of resistance to Bt maize in Spodoptera frugiperda:Lessons from Puerto Rico[J]. Journal of Invertebrate Pathology,110(3): 294-300. doi:10.1016/j.jip.2012. 04.007.
Tabashnik B E,Gassmann A J,Crowder D W,Carriére Y. 2008.Insect resistance to Bt crops:Evidence versus theory[J]. Nature Biotechnology,26(2): 199-202. doi:10.1038/nbt 1382.
van Rensburg J B J. 2007. First report of field resistance by the stem borer,Busseola fusca (Fuller) to Bt-transgenic maize[J]. South African Journal of Plant and Soil,24(3): 147-151. doi: 10.1080/02571862.2007.10634798.
Wan P,Huang Y X,Wu H H,Huang M S,Cong S B,Tabashnik B E,Wu K M. 2012. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China[J]. PLoS One,7(1): e29975. doi: 10.1371/journal.pone.0029975.
Wei J Z,Liang G M,Wang B J,Zhong F,Chen L,Khaing M M,Zhang J,Guo Y Y,Wu K M,Tabashnik B E. 2016.Activation of Bt protoxin Cry1Ac in resistant and susceptible cotton bollworm[J]. PLoS One,11(6): e0156560. doi: 10.1371/journal.pone.0156560.
Xia Y X,Lu Y H,Shen J,Gao X W,Qiu H,Li J H. 2014. Resistance monitoring for eight insecticides in Plutella xylostella in central China[J]. Crop Protection,63(9): 131-137. doi: 10.1016/j.cropro.2014.03.011.
Xu C,Cheng J H,Lin H Y,Lin C Y, Gao J H, Shen Z C. 2018. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance[J]. Scientific Reports,8(1): 15788. doi: 10.1038/s41598-018-34104-4.
Yang J,Quan Y D,Sivaprasath P, Shabbir M Z,Wang Z Y, Ferrgbi,He K L. 2018. Insecticidal activity and synergistic combinations of ten different Bt toxins against Mythimna separata(Walker) [J]. Toxins (Basel), 10(11): 454. doi: 10.3390/toxins1011045.
Yang Y Y,Mei F,Zhang W,Shen Z C,Fang J. 2014. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter[J]. Journal of Economic Entomology,107(4): 1674-1679. doi:10. 1603/ec13497.
Yang Z,Chen H,Tang W,Hua H X,Lin Y J. 2011. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes[J]. Pest Management Science, 67(4): 414-422. doi: 10.1002/ps.2079.
Zhao J Z,Cao J,Li Y X,Collins H L,Roush R T,Earle E D, Shelton A M. 2003. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution[J]. Nature Biotechnology,21(12): 1493-1497. doi: 10.1038/nbt907.
计量
- 文章访问数: 22
- HTML全文浏览量: 1
- PDF下载量: 5