不同模式防护林内PM2.5浓度变化及其影响因子分析

李立文, 周润洋, 万欣, 邢玮

李立文, 周润洋, 万欣, 邢玮. 2024: 不同模式防护林内PM2.5浓度变化及其影响因子分析. 南方农业学报, 55(9): 2689-2700. DOI: 10.3969/j.issn.2095-1191.2024.09.014
引用本文: 李立文, 周润洋, 万欣, 邢玮. 2024: 不同模式防护林内PM2.5浓度变化及其影响因子分析. 南方农业学报, 55(9): 2689-2700. DOI: 10.3969/j.issn.2095-1191.2024.09.014
LI Li-wen, ZHOU Run-yang, WAN Xin, XING Wei. 2024: Variation of PM2.5 concentration and its influencing factors in protective forests under different patterns. Journal of Southern Agriculture, 55(9): 2689-2700. DOI: 10.3969/j.issn.2095-1191.2024.09.014
Citation: LI Li-wen, ZHOU Run-yang, WAN Xin, XING Wei. 2024: Variation of PM2.5 concentration and its influencing factors in protective forests under different patterns. Journal of Southern Agriculture, 55(9): 2689-2700. DOI: 10.3969/j.issn.2095-1191.2024.09.014

不同模式防护林内PM2.5浓度变化及其影响因子分析

基金项目: 

江苏省林业科技创新与推广项目(LYKJ[2021]38)

详细信息
    作者简介:

    李立文(2005-),https://orcid.org/0009-0004-4489-9123,研究方向为森林生态,E-mail:wenll2005@126.com

    通讯作者:

    万欣(1983-),https://orcid.org/0009-0002-1523-5833,博士,副研究员,主要从事城市森林生态研究工作,E-mail:lkywanxin@163.com

  • 中图分类号: S727.2

Variation of PM2.5 concentration and its influencing factors in protective forests under different patterns

Funds: 

Jiangsu Forestry Science and Technology Innovation and Promotion Project (LYKJ[2021]38)

  • 摘要: 【目的】 探究不同模式防护林内直径≤2.5 μm的是浮颗粒物(PM2.5)浓度变化及其影响因子,为优化防护林植物配置,建设宜居城市环境提供理论参考依据。【方法】 以6种植物配置模式(榉树+桃树混交林、落羽杉纯林、落羽杉+石楠混交林、女贞+落羽杉混交林、女贞纯林和榉树+樱花混交林)且林龄均在10年左右的防护林为研究对象,空旷地作为对照(CK),测定防护林和CK的空气温度、空气湿度、气压、风向、PM2.5浓度、光照强度6种环境因子及9种土壤理化因子,并分析不同防护林模式下气候和土壤因子之间相关性;通过建立随机森林模型分析不同种植模式的重要性得分。【结果】 落羽杉纯林、落羽杉+石楠混交林、女贞+落羽杉混交林模式下PM2.5浓度低于榉树+桃树混交林、女贞纯林和榉树+樱花混交林3种防护林模式和CK。7个监测点的土壤pH均呈弱碱性,女贞+落羽杉混交林和女贞纯林模式的有机质含量显著高于其他防护林模式和CK(P<0.05),落羽杉纯林模式下有效磷含量为最高值,为14.53 mg/kg。相关分析结果表明,PM2.5浓度与空气湿度、土壤微生物碳和土壤微生物氮含量之间呈极显著正相关(P<0.01,下同),与空气温度呈极显著负相关,铵态氮与PM2.5浓度相关性不显著(P>0.05)。随机森林模型结果显示,空气温度、空气湿度、气压、风向、光照强度、土壤微生物碳、土壤微生物氮和含水量对PM2.5浓度影响的重要性得分较高。【结论】 不同防护林模式下的风向和PM2.5浓度有差异,空气温度、空气湿度、土壤微生物碳和土壤微生物氮含量是影响大气PM2.5浓度变化的重要因子,防护林配置落羽杉能有效降低大气PM2.5浓度。
    Abstract: 【Objective】 To explore the variations in(PM2.5)concentrations in different protective forest patterns and their influencing factors,which could provide theoretical basis for optimizing plant arrangements in protective forests and for the development of livable urban environments. 【Method】 This study focused on 6 plant configuration patterns within protective forests,including mixed forests of Zelkova serrata and Prunus persica,pure stands of Taxodium distichum, mixed forests of Taxodium distichum and Photinia serratifolia,mixed forests of Ligustrum lucidum and Taxodium distichum,pure stands of Ligustrum lucidum,and mixed forests of Zelkova serrata and Prunus serrulata,all with an approximate stand age of 10 years. An open space served as the control(CK). The 6 environmental factors(air temperature,air humidity,atmospheric pressure,wind direction,PM2.5 concentration and light intensity)and 9 soil physicochemical properties were measured in both the protective forests and the control site. Correlations between climatic and soil factors across different protective forest patterns were analyzed. A random forest model was employed to assess the importance scores of different planting patterns. 【Result】 PM2.5 concentrations under pure stands of Taxodium distichum,mixed forests of Taxodium distichum and Photinia serratifolia and mixed forests of Ligustrum lucidum and Taxodium distichum were lower than those in mixed forests of Zelkova serrata and Prunus persica,pure stands of Ligustrum lucidum,mixed forests of Zelkova serrata and Prunus serrulata,as well as the CK site. Soil pH at all 7 monitoring points was slightly alkaline. Organic matter content in mixed forests of Ligustrum lucidum and Taxodium distichum and pure stands of Ligustrum lucidum was significantly higher than in other protective forest patterns and the CK(P<0.05). The highest available phosphorus content(14.53 mg/kg)was found in pure stands of Taxodium distichum. Correlation analysis indicated that PM2.5 concentration was extremely significantly positively correlated with air humidity,soil microbial carbon content and soil microbial nitrogen content(P<0.01,the same below),and extremely significantly negatively correlated with air temperature. There was no significant correlation with ammonium nitrogen(P>0.05). Additionally,the random forest model revealed that air temperature,air humidity,atmospheric pressure,wind direction,light intensity,soil microbial carbon, soil microbial nitrogen and moisture content had high importance scores in influencing PM2.5 concentration. 【Conclusion】 There are differences in wind direction and PM2.5 concentrations under various protective forest patterns. Air temperature, air humidity,soil microbial carbon,and soil microbial nitrogen content are important factors affecting atmospheric PM2.5 concentration variations. The inclusion of Taxodium distichum in protective forest configurations can effectively reduce atmospheric PM2.5 concentrations.
  • 包红光,王成,郄光发,杜万光,孙丽. 2016. 城市公园外侧防护林结构对外源PM2.5的消减作用[J]. 生态环境学报,25(6):987-993.[Bao H G,Wang C,Qie G F,Du W G,Sun L. 2016. The effect of forest shelter belt on subduction of PM 2.5 in urban parks[J]. Ecology and Environmental Sciences,25(6):987-993.]doi:10.16258/j.cnki.1674-5906.2016. 06.011.
    鲍士旦. 2000. 土壤农化分析[M]. 第3版. 北京:中国农业出版社. [Bao S D. 2000. Soil agrochemical analysis[M].The 3rd Edition. Beijing:China Agriculture Press.]
    曹军,谢佳丽,孙娟,李锦雯,徐政,华陈杰,张雨生,宋柏颖,刘永春. 2023. 硫酸铵和硝酸铵对镇江市大气PM2.5理化性质的影响[J]. 环境科学,44(10):5356-5369.[Cao J,Xie J L,Sun J,Li J W,Xu Z,Hua C J,Zhang Y S,Song B Y,Liu Y C. 2023. Influence of ammonium sulfate and ammonium nitrate on the properties of ambient PM2.5 in Zhenjiang[J]. Environmental Science,44(10):5356-5369.]doi: 10.13227/j.hjkx.202210270.
    车瑞俊,刘大锰,袁杨森. 2007. 北京冬季大气颗粒物污染水平和影响因素研究[J]. 中国科学院大学学报,24(5): 556-563.[Che R J,Liu D M,Yuan Y S. 2007. Research on the pollution level and affecting factors of atmospheric par-ticulates in Beijing City during winte[r J]. Journal of Uni-versity of Chinese Academy of Sciences,24(5):556-563.]doi: 10.3969/j.issn.1002-1175.2007.05.002.
    傅敏宁,郑有飞,徐星生,牛鲁燕. 2011. PM2.5监测及评价研究进展[J]. 气象与减灾研究,34(4):1-6.[Fu M N,Zheng Y F,Xu X S,Niu L Y. 2011. Advances of study on moni-toring and evaluation of PM2.[5 J]. Meteorology and Disas-ter Reduction Research,34(4):1-6.]doi:10.3969/j. issn. 1007-9033.2011.04.001.
    蒋燕,陈波,鲁绍伟,李少宁. 2016. 北京城市森林PM2.5质量浓度特征及影响因素分析[J]. 生态环境学报,25(3): 447-457.[Jiang Y,Chen B,Lu S W,Li S N. 2016. Analy-sis on characteristics and influential factors of PM 2.5 mass concentration in Beijing’s urban forest[J]. Ecology and Environmental Sciences,25(3):447-457.]doi: 10.16258/j.cnki.1674-5906.2016.03.012.
    李欣海. 2013. 随机森林模型在分类与回归分析中的应用[J].应用昆虫学报,50(4):1190-1197.[Li X H. 2013. Using“random forest”for classification and regression[J]. Chi-nese Journal of Applied Entomology,50(4):1190-1197.]
    刘浩栋,陈亚静,李清殿,肖茂,郭慧玲,申卫星,谭亚军,李传荣. 2020. 城市道路林对细颗粒物(PM2.5)的阻滞作用解析[J]. 浙江农林大学学报,37(3):397-406.[Liu H D,Chen Y J,Li Q D,Xiao M,Guo H L,Shen W X,Tan Y J,Li C R. 2020. Analysis of blocking effects of urban road-side forests on PM 2.5[J]. Journal of Zhejiang A&F Uni-versity,37(3):397-406.]doi:10.11833/j.issn.2095-0756. 20190335.
    刘萌萌. 2014. 林带对阻滞吸附 PM2.5等颗粒物的影响研究[D]. 北京:北京林业大学. [Liu M M. 2014. Studies on influence of the forest belt to intercept and adsorb particu-late matter [D]. Beijing:Beijing Forestry University.]
    刘娜,冯新斌,Landis Matthcw,陈卓,仇广乐. 2014. 贵阳市大气颗粒物(PM2.5)污染特征及气象参数的影响[J]. 地球与环境学报,42(3):311-315.[Liu N,Feng X B,Landis M,Chen Z,Qiu G L. 2014. Pollution characteristics of PM 2.5 in Guiyang and its influence on meteorological parameters[J]. Earth and Environment,42(3):311-315.]doi: 10.14050/j.cnki.1672-9250.2014.03.016.
    刘旭辉,余新晓,张振明,刘萌萌,阮氏青草. 2014. 林带内PM 2.5,PM2.5污染特征及其与气象条件的关系[J]. 生态学杂志,33(7):1715-1721.[Liu X H,Yu X X,Zhang Z M,Liu M M,Ruanshi Q C. 2014. Pollution characteristics of atmospheric particulates in forest belts and their relation-ship with meteorological conditions[J]. Chinese Journal of Ecology,33(7):1715-1721.]doi:10.13292/j.1000-4890. 20140422.016.
    牛庆花. 2019. 御道口地区主要林分类型防护效益分析[D].保定:河北农业大学.[Niu Q H. 2019. Analysis on protec-tion benefit of main forest types in Yudaokou area[D].Baoding:Hebei Agricultural University.]doi: 10.27109/d.cnki.ghbnu.2019.000392.
    彭金龙,关欣,杨思培,王广,李巧云. 2017. 气象因素对长沙颗粒物浓度影响的季节性差异分析[J]. 四川环境,36(4):103-108.[Peng J L,Guan X,Yang S P,Wang G,Li Q Y. 2017. The differential effects of meteorological fac-tors on the particulate concentration among seasons in Changsha[J]. Sichuan Environment,36(4):103-108.]doi: 10.14034/j.cnki.schj.2017.04.019.
    邱玲,刘芳,张祥,高天. 2018. 城市公园不同植被结构绿地削减空气颗粒物浓度研究[J]. 环境科学研究,31(10), 1685-1694.[Qiu L,Liu F,Zhang X,Gao T. 2018. Reducing effect of air particulate matter concentration by green spaces with different vegetation structure in city parks[J].Research of Environmental Sciences,31(10):1685-1694.]doi: 10.13198/j.issn.10016929.2018.06.29.
    施光耀,周宇,桑玉强,张劲松,孟平,蔡露露,裴松义,王尧. 2021. 基于随机森林方法分析环境因子对空气负离子的影响[J]. 中国农业气象,42(5):390-401.[Shi G Y,Zhou Y,Sang Y Q,Zhang J S,Meng P,Cai L L,Pei S Y,Wang Y. 2021. Influence of environmental factors on negative air ion using random forest algorithm[J]. Chinese Journal of Agrometeorology,42(5):390-401.]doi: 10.3969/j.issn.1000-6362.2021.05.004.
    王冰,张承中. 2009. 大气可吸入颗粒物 PM2.5研究进展[J].中国科技信息,(8):25-26.[Wang B,Zhang C Z. 2009.Research progress on atmospheric inhalable particulate matter PM 2.5[J]. China Science and Technology Informa-tion,(8):25-26.]doi:10.3969/j.issn.1001-8972.2009.08. 008.
    王会霞,石辉,王彦辉. 2015. 典型天气下植物叶面滞尘动态变化[J]. 生态学报,35(6):1696-1705.[Wang H X,Shi H,Wang Y H. 2015. Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions[J]. Acta Ecologica Sinica,35(6):1696-1705.]doi: 10.5846/stxb201306051356.
    王淑英,张小玲. 2002. 北京地区PM10污染的气象特征[J]. 应用气象学报. 13(S1):177-184.[Wang S Y,Zhang X L. 2002. Meteorological features of PM10 pollution in Beijing[J]. Journal of Applied Meteorological Science,13(S1): 177-184.]doi: 10.3969/j.issn.1001-7313.2002.z1.020.
    王赞红,李纪标. 2006. 城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态[J]. 生态环境,15(2):327-330.[Wang Z H,Li J B. 2006. Capacity of dust uptake by leaf surface of Euonymus Japonicus Thunb. and the morphology of captured particle in air polluted city. Ecology and Environ-mental Sciences,15(2):327-330.]doi:10.3969/j.issn. 1674-5906.2006.02.027.
    王珍. 2010. 福建省沿海木麻黄防护林生态系统服务功能及其评价[D]. 福州:福建农林大学.[Wang Z. 2010. Evalu-ation on the ecological service value of the coastal protec-tion forest of Casuarina equisetifolia in Fujian Province[D]. Fuzhou:Fujian Agriculture and Forestry University.]doi: 10.7666/d.y1748058.
    杨复沫,马永亮,贺克斌. 2000. 细微大气颗粒物PM2.5及其研究概况[J]. 世界环境,(4):32-34.[Yang F M,Ma Y L,He K B. 2000. A brief introduction to PM 2.5 and related research[J]. World Environment,(4),32-34.]
    杨进怀. 2012. 水土保持在治理北京空气可吸入颗粒物PM2.5工作中的作用及思考[J]. 中国水利,(2):21-22.[Yang J H. 2012. Functions of soil and water conservation in improvement of air quality in Beijing[J]. China Water Resources,(2):21-22.]doi:10.3969/j.issn.1000-1123.2012. 02.007.
    张淑平,韩立建,周伟奇,郑晓欣. 2016. 冬季PM2.5的气象影响因素解析[J]. 生态学报,36(24):7897-7907.[Zhang S P,Han L J,Zhou W Q,Zheng X X. 2016. Relationships between fine particulate matter(PM2.5)and meteorological factors in winter at typical Chinese cities[J]. Acta Ecologica Sinica,36(24):7897-7907.]doi:10.5846/stxb201505 020901.
    周忠凯,霍连飞,王慧鑫,汤赤,孟力力,柏宗春. 2022. 畜禽舍颗粒物排放特征及控制技术与装备[J]. 江苏农业学报, 38(5):1421-1431.[Zhou Z K,Huo L F,Wang H X,Tang C,Meng L L,Bai Z C. 2022. Emission characteristics and control technology and equipment of particulate matter in livestock and poultry houses[J]. Jiangsu Journal of Agri-cultural Sciences,38(5):1421-1431.]doi:10.3969/j.issn. 1000-4440.2022.05.030.

    Aldrin M,Haff I H. 2005. Generalised additive modelling of air pollution,traffic volume and meteorology[J]. Atmospheric Environment,39(11):2145-2155. doi:10.1016/j.atmosenv. 2004.12.020.

    Aller J Y,Kuznetsova M R,Jahns C J,Kemp P F. 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols[J]. Journal of Aerosol Science,36(5-6):801-812. doi: 10.1016/j.jaerosci.2004.10.012.

    Becker J S,Bellis D,Staton I,McLeod C W,Dombovari J,Becker J S. 2000. Determination of trace elements including platinum in tree bark by ICP mass spectrometry[J].Fresenius’Journal of Analytical Chemistry,368:490-495.doi: 10.1007/s002160000539.

    Beckett K P,Freer Smith P,Taylor G. 2000. Effective tree spe-cies for local air quality management[J]. Arboricultural Journal,26(1):12-19.

    Breiman L. 2001. Random forests[J]. Machine Learning,45:5-32. doi: 10.1023/A:1010933404324.

    Chan Y C,Simpson R W,Mctainsh G H,Vowles P D,Cohen D D,Bailey G M. 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques[J]. Atmospheric Environment,33(19):3237-3250. doi: 10.1016/S1352-2310(99)00091-6.

    Chen Z Y,Chen D L,Zhao C F,Kwan M P,Cai J,Zhuang Y,Zhao B,Wang X Y,Chen B,Yang J,Li R Y,He B,Gao B B,Wang K C,Xu Bing. 2020. Influence of meteorological conditions on PM 2.5 concentrations across China:A review of methodology and mechanism[J]. Environment Interna-tional,139:105558. doi: 10.1016/j.envint.2020.105558.

    Escobedo F J,Nowak D J. 2009. Spatial heterogeneity and air pollution removal by an urban forest[J]. Landscape Urban Planning,90(3-4):102-110. doi:10.1016/j. landurbplan. 2008.10.021.

    Freer-Smith P H,El-Khatib A A,Taylor G. 2004. Capture of particulate pollution by trees:A comparison of species typi-cal of semi-arid areas(Ficus nitida and Eucalyptus globu-lus)with European and North American species[J]. Water,Air,& Soil Pollution,155:173-187. doi:10.1023/B:WATE. 0000026521.99552.fd.

    Gu B J,Zhang L,Van Dingenen R,Vieno M,Van Grinsven H J M,Zhang X M,Zhang S H,Chen Y F,Wang S T,Ren C C,Ren C C,Rao S,Holland M,Winiwarter W,Chen D,Xu J M,Jian L,Zhao Y,Zhu Y P,Zhang M B,Bertolatti D. 2012. An application of ARIMA model to predict sub-micron particle concentrations from meteorological factors at a busy roadside in Hangzhou,China[J]. Science of the Total Environment,426:336-345. doi:10.1016/j.scitotenv. 2012.03.025.

    Joergensen R G. 1996. The fumigation-extraction method to estimate soil microbial biomass:calibration of the kEC value[J]. Soil Biology and Biochemistry,28(1):25-31. doi: 10.1016/0038-0717(95)00102-6.

    Jouraeva V A,Johnson D L,HassettJ P,Nowak D J. 2002. Dif-ferences in accumulation of PAHs and metals on the leaves of Tilia×euchlora and Pyrus calleryana[J]. Environmental Pollution,120(2):331-338. doi:10.1016/S0269-7491(02) 00121-5.

    Kaupp H,Blumenstock M,McLachlan M S. 2000. Retention and mobility of atmospheric particle - associated organic pollutant PCDD/Fs and PAHs in maize leaves[J]. New Phytologist,148(3):473-480. doi:10.1046/J.1469-8137. 2000.00770.X.

    Liao T T,Wang S,Ai J,Gui K,Duan B L,Zhao Q,Zhang X,Jiang W T,Sun Y. 2017. Heavy pollution episodes,trans-port pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu(China)[J]. Science of the Total Environment,584-585:1056-1065. doi: 10.1016/j.scitotenv.2017.01.160.

    Lippmann M,Frampton M,Schwartz J,Dockery D,Schlesinger R,Koutrakis P,Froines J,Nel A,Finkelstein J,Godleski J,Kaufman J,Koenig J,Larson T,Luchtel D,Liu L J S,Oberdorster C,Peters A,Sarnat J,Sioutas C,Suh H,Jeff S,Utell M,Wichmann E,Zelikoffeff J. 2003. The U. S.environmental protection agency particulate matter health effects research centers program:A midcourse report of status,progress,and plans[J]. Environmental Health Per-spectives,111(8):1074-1092. doi: 10.1289/ehp.5750.

    Luo Q Q,Xian X F,Chen G C,Yang Q L. 2005. Water soluble components of PM10 in Chongqing,China[J]. Chinese Jour-nal of Geochemistry,24:155-157. doi:10.1007/BF0284 1159.

    Nguyen T B A,Henao L A,Li Z L,Cheng L,Hu H W. 2023.Impacts of shelterbelt systems on pasture production and soil bacterial and fungal communities in agricultural fields[J]. Journal of Sustainable Agriculture and Environment,2(3):301-313. doi: 10.1002/SAE2.12059.

    Nowak D J,Crane D E,Stevens J C. 2006. Air pollution removal by urban trees and shrubs in the United States[J].Urban Forestry & Urban Greening,4(3-4):115-123. doi: 10.1016/j.ufug.2006.01.007.

    Pekkanen J,Timonen K L,Ruuskanen J,Reponen A,Mirme A. 1997. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symp-toms[J]. Environmental Research,74(1):24-33. doi:10. 1006/enrs.1997.3750.

    Pope C A,Burnett R T,Thun M J,Calle E E,Krewski D,Ito K,Thurston G D. 2002. Lung cancer,cardiopulmonary mor-tality,and long-term exposure to fine particulate air pollu-tion[J]. Jama,287(9):1132-1141. doi:10.1001/jama.287. 9.1132.

    Shah M H,Shahee N,Jaffar M,Khalique A. Tariq S R,Man-zoor S. 2006. Spatial variations in selected metal contents and particle size distribution in an urban and rural atmo-sphere of Islamabad,Pakistan[J]. Journal of Environmen-tal Management,78(2):128-137. doi:10.1016/j.jenvman. 2005.04.011.

    Strand L B,Barnett A G,Tong S. 2012. Maternal exposure to ambient temperature and the risks of preterm birth and still-birth in Brisbane,Australia[J]. American Journal of Epide-miology,175(2):99-107. doi: 10.1093/aje/kwr404.

    Vance E D,Brookes P C,Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry,19(6):703-707. doi:10.1016/ 0038-0717(87)90052-6.

    Wang J H,Ogawa S. 2015. Effects of meteorological conditions on PM 2.5 concentrations in Nagasaki,Japan[J]. International Journal of Environmental Research and Public Health, 12(8):9089-9101. doi: 10.3390/ijerph120809089.

    Wu Y,Wang W J,Wang Q,Zhong Z L,Wang H M,Yang Y B. 2023. Farmland shelterbelt changes in soil properties:Soil depth-location dependency and general pattern in songnen plain,northeastern China[J]. Forests,14(3):584. doi:10. 3390/F14030584.

    Yang J,McBride J,Zhou J X,Sun Z Y. 2005. The urban forest in Beijing and its role in air pollution reduction[J]. Urban Forestry & Urban Greening,3(2):65-78. doi: 10.1016/j.ufug.2004.09.001.

    Zhang C,Ni Z W,Ni L P. 2015a. Multifractal detrended crosscorrelation analysis between PM2.5 and meteorological fac-tors[J]. Physica A:Statistical Mechanics and its Applica-tions,438:114-123. doi: 10.1016/j.physa.2015.06.039.

    Zhang H L,Wang Y G,Hu J L,Ying Q,Hu X M. 2015b. Rela-tionships between meteorological parameters and criteria air pollutants in three megacities in China[J]. Environmen-tal Research,140:242-254. doi:10.1016/j.envres.2015.04. 004.

    Zhang Q,Quan J N,Tie X X,Li X,Liu Q,Gao Y,Zhao D L. 2015c. Effects of meteorology and secondary particle for-mation on visibility during heavy haze events in Beijing,China[J]. Science of the Total Environment,502:578-584.doi: 10.1016/j.scitotenv.2014.09.079.

    Zhang Z Y,Zhang X L,Gong D Y,Quan W J,Zhao X J,Ma Z Q,Kim S J. 2015d. Evolution of surface O3 and PM2.5 con-centrations and their relationships with meteorological con-ditions over the last decade in Beijing[J]. Atmospheric Environment,108:67-75. doi:10.1016/j.atmosenv.2015.02. 071.

计量
  • 文章访问数:  14
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09

目录

    /

    返回文章
    返回