Effects of different tillage practices of soil biopores and nonbiopores structures in sugarcane field soils of Guangxi
-
摘要: 【目的】 探究传统旋耕与粉垄耕作方式对广西蔗田土壤生物性和非生物性孔隙结构的影响,以期为该地区甘蔗生产中合理选择耕作方式提供理论依据。【方法】 以蔗田土壤为研究对象,设粉垄耕作20 cm(F20)和传统旋耕20 cm(X20)2种处理,于甘蔗伸长期采集土壤样品,测定0~40 cm深度土层的土壤颗粒分布、容重及有机质含量;利用X射线CT扫描技术并结合ImageJ 1.53c及MATLAB 2019a等软件分离获取土壤生物性和非生物性孔隙的二维和三维特征参数,并对2种处理下孔隙结构进行三维重构可视化。【结果】 与X20处理相比,F20处理0~40 cm土层的黏粒含量平均值显著降低32.16%(P<0.05,下同),而粉粒含量平均值显著提高12.82%。F20处理0~10 mm孔径范围的二维生物性孔隙数量高于X20处理,二者非生物性二维孔隙数量差异不明显;F20处理的生物性孔隙圆度较X20处理显著提高10.58%。在孔隙三维参数中,F20处理的生物性孔隙连通度较X20处理显著提高67.55%,其余参数均小于X20处理;F20处理非生物性孔隙的孔隙度、弯曲度、连通度和比表面积均低于X20处理,但均无显著差异(P>0.05)。在三维重构图中,X20处理生物性孔隙多分布在0~10 cm土壤表层区域,F20处理的生物性孔隙则在10~30 cm土层中形成了更多向下延伸的连续管状结构;X20处理的非生物性孔隙分布较疏松,F20处理的作物根系主要生长区周围存在较多非生物性孔隙。【结论】 粉垄耕作形成的生物性孔隙结构优于传统旋耕,特别是在形成上下连通的生物性孔隙和更密集的非生物孔隙分布方面具有一定优势,可更好地促进水肥运移通道的形成。在广西甘蔗种植过程中,可采用粉垄耕作以有效改善土壤孔隙结构。Abstract: 【Objective】 To investigate the effects of traditional rotary plowing and Fenlong tillage on the biopores and non-biopores structures of sugarcane field soils in Guangxi,which could provide theoretical basis for the rational selection of tillage practices in sugarcane production in this region. 【Method】 Using the soil in sugarcane field as object,soil samples were collected during the elongation period of sugarcane using 2 treatments,namely,20 cm Fenlong tillage (F20)and 20 cm traditional rotary tillage(X20),to determine the distribution of soil particles,bulk density and organic matter content of the soil layer from 0 to 40 cm depth. The two-dimensional and three-dimensional feature parameters of soil biopores and non-biopores space were obtained by using X-ray CT scanning technology combined with ImageJ 1.53c and MATLAB 2019a,and the pore structure was visualized by three-dimensional reconstruction under the 2 treatments. 【Result】 Compared with X20 treatment,the average clay content of 0-40 cm soil layer in F20 treatment was significantly reduced by 32.16%(P<0.05,the same below). In comparison,the average silt content was significantly increased by 12.82%. The biopores two-dimensional number with 0-10 mm pore diameter of F20 treatment was higher than that of X20 treatment,and the difference of the non-biopores two-dimensional pore number between the two was not obvious;the biopores roundness in F20 treatment was significantly increased by 10.58% compared with X20 treatment. Among the threedimensional pore parameters,the connectivity of biopores in F20 treatment was significantly increased by 67.55% compared with X20 treatment,and the rest of the parameters were smaller than X20 treatment;the porosity,tortuosity,connectivity,and specific surface area of non-biopores in F20 treatment were lower than those in X20 treatment,but the differences were not significant(P>0.05). In the three-dimensional reconstruction maps,the biopores of the X20 treatment were only mostly distributed in the 0-10 cm soil surface area,while the biopores of the F20 treatment formed more downward-extending continuous tubular structures in the 10-30 cm soil layer;the distribution of the non-biopores in the X20 treatment was more sparse;and more non-biopores existed around the main growing area of the crop root system in the F20 treatment. 【Conclusion】 The biopores structure formed by Fenlong tillage is superior to that of traditional rotary plowing,especially in the formation of upper and lower connected biopores and denser distribution of non-biopores, which can better promote the formation of water and fertilizer transport channels. In the process of sugarcane cultivation in Guangxi,Fenlong tillage can be used to effectively improve the soil pore structure.
-
Keywords:
- sugarcane fields /
- tillage practices /
- soil pores /
- CT scan /
- three-dimensional reconstruction
-
-
甘磊,李健,李帅,韦灵,Rad S. 2020. 广西甘蔗地不同耕作方式下土壤孔隙特征[J]. 水土保持研究,27(6):122-130.[Gan L,Li J,Li S,Wei L,Rad S. 2020. Soil pore charac-teristics under different tillage practices in sugarcane fields of Guangxi[J]. Research of Soil and Water Conservation, 27(6):122-130.]doi: 10.13869/j.cnki.rswc.2020.06.018. 甘磊,张俊,郑思文,韦本辉,李健,李帅,邓婉珍. 2021. 秸秆覆盖对广西甘蔗地土壤水分与结构变化的影响[J]. 南方农业学报,52(7):1745-1752.[Gan L,Zhang J,Zheng S W,Wei B H,Li J,Li S,Deng W Z. 2021. Effects of straw mulching on soil moisture and structure of sugarcane field in Guangxi[J]. Journal of Southern Agriculture,52(7): 1745-1752.]doi: 10.3969/j.issn.2095-1191.2021.07.002. 郭晓明,马腾,陈柳竹,刘林. 2015. 污水灌溉下土壤孔隙特征的CT定量分析[J]. 地球科学——中国地质大学学报,40(11):1896-1903.[Guo X M,Ma T,Chen L Z,Liu L. 2015. Quantitative analysis of soil pore under sewage irri-gation using computerized tomography[J]. Journal of Earth Science—Journal of China University of Geosciences,40(11):1896-1903.]doi: 10.3799/dqkx.2015.170. 李华焜,郑刘根,陈永春,李兵,陶鹏飞,李浩. 2024. 基于CT 扫描的重构土壤孔隙结构及其对水盐运移影响[J]. 煤田地质与勘探,52(4):120-127.[Li H K,Zheng L G,Chen Y C,Li B,Tao P F,Li H. 2024. Exploring the pore structure of reconstructed soils and its effects on water and salt transport based on CT scanning[J]. Coal Geology & Exploration,52(4):120-127.]doi:10.12363/issn.1001-1986. 23.09.0586. 李晓龙,高聚林,胡树平,于晓芳,王志刚,苏治军,谢岷. 2015. 不同深耕方式对土壤三相比及玉米根系构型的影响[J]. 干旱地区农业研究,33(4):1-7.[Li X L,Gao J L,Hu S P,Yu X F,Wang Z G,Su Z J,Xie M. 2015. Effects of various cultivation approaches on the three-phase ratio of soil and root system structure of maize[J]. Agricultural Research in the Arid Areas,33(4):1-7.]doi: 10.7606/j.issn.1000-7601.2015.04.01. 盛勇创,王释苇,张硕,王健豪,常成,张红霞,黄金生,甘磊. 2023. 不同粉垄深度对甘蔗地土壤孔隙结构的影响[J].中国土壤与肥料,(9):12-19.[Sheng Y C,Wang S W,Zhang S,Wang J H,Chang C,Zhang H X,Huang J X,Gan L. 2023. Effects of different depths of Fenlong tillage on the soil pore structure in sugarcane field[J]. Soils and Fertilizers Sciences in China,(9):12-19.]doi: 10.11838/sfsc.1673-6257.22461. 石伟业,何文寿,李惠霞,何进宇,陈彦云. 2023. 粉垄耕作对土壤理化性质和水稻生长及产量的影响[J]. 江苏农业科学,51(1):232-238[. Shi W Y,He W S,Li H X,He J Y,Chen Y Y. 2023. Effects of silt ridge tillage on soil physico-chemical properties and rice growth and yield[J]. Jiangsu Agricultural Sciences,51(1):232-238.]doi: 10.15889/j.issn.1002-1302.2023.01.034. 王松,张硕,张钰,张红霞,黄太庆,甘磊. 2024. 广西某露天矿区不同复垦模式下土壤的孔隙特征[J]. 金属矿山,(3): 269-277[. Wang S,Zhang S,Zhang Y,Zhang H X,Huang T Q,Gan L. 2024. Soil pore characteristics under different reclamation modes for a open-pit mine area in Guangxi[J]. Metal Mine,(3):269-277.]doi:10.19614/j.cnki.jsks. 202403034. 徐洋洋,张兴,左西宇,王天阳,樊向阳,杜瑞琪,栗现文,陈俊英. 2023. 再生水灌溉对土壤表层大孔隙的影响[J]. 农业工程学报,39(23):113-122.[Xu Y Y,Zhang X,Zuo X Y,Wang T Y,Fan X Y,Du R Q,Li X W,Chen J Y. 2023.Effects of reclaimed water irrigation with different water quality on surface soil macro-pores[J]. Transactions of the Chinese Society of Agricultural Engineering,39(23):113-122.]doi: 10.11975/j.issn.1002-6819.202305030. 张静举,陈晓冰,郑思文,马蕊,甘磊. 2018. 基于CT技术的稻田不同轮作方式下土壤孔隙结构研究[J]. 土壤通报,49(5):1085-1090.[Zhang J J,Chen X B,Zheng S W,Ma R,Gan L. 2018. CT technique to analyze pore structures of paddy soils under different rotations[J]. Chinese Journal of Soil Science,49(5):1085-1090.]doi: 10.19336/j.cnki.trtb.2018.05.12. Banfield C C,Pausch J,Kuzyakov Y,Dippold M A. 2018.Microbial processing of plant residues in the subsoil—The role of biopores[J]. Soil Biology and Biochemistry,125: 309-318. doi:10.1016/j.soilbio.2018.08.004.de Almeida W S,Panachuki E,de Oliveira P T S,da Silva Menezes R,Sobrinho T A,de Carvalho D F. 2018. Effect of soil tillage and vegetal cover on soil water infiltration[J]. Soil & Tillage Research,175:130-138. doi:10.1016/j.still.2017.07.009.
Ferro N D,Charrier P,Morari F. 2013. Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment[J]. Geoderma,204-205:84-93. doi: 10.1016/j.geoderma.2013.04.012.
Graham M H,Haynes R J. 2005. Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by Biolog and substrate-induced respiration methods[J]. Applied Soil Ecology,29(2):155-164. doi: 10.1016/j.apsoil.2004.11.002.
Guga S,Ma Y N,Riao D,Zhi F,Xu J,Zhang J Q. 2023.Drought monitoring of sugarcane and dynamic variation characteristics under global warming:A case study of Guangxi,China[J]. Agricultural Water Management,275: 108035. doi: 10.1016/j.agwat.2022.108035.
Hamza M A,Anderson W K. 2005. Soil compaction in crop-ping systems:A review of the nature,causes and possible solutions[J]. Soil & Tillage Research,82(2):121-145. doi: 10.1016/j.still.2004.08.009.
Han E,Kirkegaard J A,White R,Smith A G,ThorupKristensen K,Kautz T,Athmann M. 2022. Deep learning with multisite data reveals the lasting effects of soil type,tillage and vegetation history on biopore genesis[J]. Geoderma,425:116072. doi: 10.1016/j.geoderma.2022.116072.
Jarvis N,Larsbo M,Koestel J. 2017. Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography[J]. Geoderma,287: 71-79. doi: 10.1016/j.geoderma.2016.06.026.
Ju X N,Gao L,She D L,Jia Y H,Pang Z,Wang Y J. 2024.Impacts of the soil pore structure on infiltration characteristics at the profile scale in the red soil region[J]. Soil & Tillage Research,236:105922. doi:10.1016/j.still.2023. 105922.
Kaur P,Lamba J,Way T R,Balkcom K S,Sanz-Saez A,Watts D B. 2024. Characterization of soil pores in strip-tilled and conventionally-tilled soil using X-ray computed tomography[J]. Soil & Tillage Research,239:106035. doi:10. 1016/j.still.2024.106035.
Kautz T. 2015. Research on subsoil biopores and their functions in organically managed soils:A review[J]. Renewable Agriculture and Food Systems,30(4):318-327. doi:10. 1017/S1742170513000549.
Lei G Q,Zeng W Z,Thuy H N,Zeng J C,Chen H R,Amit K S,Thomas G,Wu J W,Huang J S. 2023. Relating soil-root hydraulic resistance variation to stomatal regulation in soilplant water transport modeling[J]. Journal of Hydrology, 617:128879. doi: 10.1016/j.jhydrol.2022.128879.
Li Z J,Liu H G,Wang T G,Gong P,Li P F,Li L,Bai Z T. 2024. Deep vertical rotary tillage depths improved soil conditions and cotton yield for saline farmland in South Xinjiang[J]. European Journal of Agronomy,156:127166.doi: 10.1016/j.eja.2024.127166.
Luo L F,Lin H,Li S C. 2010. Quantification of 3-D soil macro‐pore networks in different soil types and land use using computed tomography[J]. Journal of Hydrology,393(1-2): 53-64. doi: 10.1016/j.jhydrol.2010.03.031.
Müller K,Katuwal S,Young I,McLeod M,Moldrup P,de Jonge L W,Clothier B. 2018. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures[J]. Geoderma,313:82-91. doi: 10.1016/j.geoderma.2017.10.020.
Lamandé M,Vogel H J,de Jonge L W. 2013. Revealing soil structure and functional macroporosity along a clay gradient using X-ray computed tomography[J]. Soil Science Society of America Journal,77(2):403-411. doi:10. 2136/sssaj2012.0134.
Phalempin M,Landl M,Wu G M,Schnepf A,Vetterlein D,Schlüter S. 2022. Maize root-induced biopores do not influence root growth of subsequently grown maize plants in well aerated,fertilized and repacked soil columns[J].Soil and Tillage Research,221:105398. doi: 10.1016/j.still.2022.105398.
Qi Y,Ju Y W,Huang C,Zhu H J,Bao Y,Wu J G,Meng S Z,Chen W G. 2019. Influences of organic matter and kaoli-nite on pore structures of transitional organic-rich mudstone with an emphasis on S2 controlling specific surface area[J]. Fuel,237:860-873. doi:10.1016/j.fuel.2018.10. 048.
Rab M A,Haling R E,Aarons S R,Hannah M,Young I M,Gibson D. 2014. Evaluation of X-ray computed tomography for quantifying macroporosity of loamy pasture soils[J].Geoderma,213:460-470. doi:10.1016/j.geoderma.2013. 08.037.
Scarpare F V,de Jong van Lier Q,de Camargo L,Pires R C M,Ruiz-Corrêa S T,Bezerra A H F,Gava G J C,Dias C T S. 2019. Tillage effects on soil physical condition and root growth associated with sugarcane water availability[J].Soil & Tillage Research,187:110-118. doi:10.1016/j.still. 2018.12.005.
Singh D,Mishra A K,Patra S,Mariappan S,Singh N. 2021.Near-saturated soil hydraulic conductivity and pore charac-teristics as influenced by conventional and conservation tillage practices in north-west Himalayan region,India[J].International Soil and Water Conservation Research,9(2): 249-259. doi: 10.1016/j.iswcr.2021.01.001.
Thotakuri G,Chakraborty P,Singh J,Xu S,Kovács P,Iqbal J,Kumar S. 2024. X-ray computed tomography—Measured pore characteristics and hydro-physical properties of soil profile as influenced by long-term tillage and rotation systems[J]. Catena,237:107801. doi:10.1016/j.catena.2023. 107801.
Wang S,Gan L,Zhang S,Li J,Chang C,Zhang Y,Zhang H X,Wei B H. 2024a. Soil biopores and non-biopores responses to different tillage treatments in sugarcane fields in Guangxi,China[J]. Agronomy,14(7):1378. doi: 10.3390/agronomy14071378.
Wang S,Gan L,Zhang Y,Gao Z B,Luo Z H,Zhou H J,Zhang H,Zhang H X,Huang T Q. 2024b. Effects of different reclamation years and modes on soil moisture transport path-ways and permeability characteristics in an open-pit mining area in Guangxi [J]. Water,16(9):1307. doi: 10.3390/w16091307.
Wei B H,Han S Y,He G H. 2022. Smash-ridging cultivation improves crop production[J]. Outlook on Agriculture,51(2):173-177. doi: 10.1177/00307270211001881.
Wen T D,Chen X S,Luo Y W,Shao L T,Niu G. 2023. Threedimensional pore structure characteristics of granite residual soil and their relationship with hydraulic properties under different particle gradation by X-ray computed tomography[J]. Journal of Hydrology,618:129230. doi: 10.1016/j.jhydrol.2023.129230.
Yu W W,He F,Xi P. 2010. A rapid 3D seed-filling algorithm based on scan slice[J]. Computers & Graphics,34(4): 449-459. doi: 10.1016/j.cag.2010.05.005.
Zhang J,Li F Q,Liao P Z,Khan A,Hussain I,Iqbal A,Ali I,Wei B H,Jiang L G. 2021. Smash ridge tillage strongly influence soil functionality,physiology and rice yield[J].Saudi Journal of Biological Sciences,28(2):1297-1307.doi: 10.1016/j.sjbs.2020.11.054.
Zhang Z B,Lin L,Wang Y,Peng X H. 2016. Temporal change in soil macropores measured using tension infiltrometer under different land uses and slope positions in subtropical China[J]. Journal of Soil & Sediments,16(3):854-863.doi: 10.1007/s11368-015-1295-z.
Zhang Z B,Liu K L,Zhou H,Lin H,Li D M,Peng X H. 2018.Three dimensional characteristics of biopores and nonbiopores in the subsoil respond differently to land use and fertilization[J]. Plant and Soil,428(1-2):453-467. doi: 10.1007/s11104-018-3689-3.
Zhang Z B,Liu K L,Zhou H,Lin H,Li D M,Peng X H. 2019.Linking saturated hydraulic conductivity and air permeability to the characteristics of biopores derived from X-ray computed tomography[J]. Journal of Hydrology,571:1-10. doi: 10.1016/j.jhydrol.2019.01.041.
Zhang Z B,Peng X H. 2021. Bio-tillage:A new perspective for sustainable agriculture[J]. Soil & Tillage Research,206: 104844. doi: 10.1016/j.still.2020.104844.
Zhou W,Zhan P M,Zeng M,Chen T,Zhang X R,Yang G H,Guo Y P. 2023. Effects of ant bioturbation and foraging activities on soil mechanical properties and stability[J].Global Ecology and Conservation,46:e02575. doi:10. 1016/j.gecco.2023.e02575.
计量
- 文章访问数: 15
- HTML全文浏览量: 0
- PDF下载量: 7