Comprehensive evaluation of salt tolerance in ginger at seedling stage and expression pattern of aquaporin protein
-
摘要: 【目的】探究盐胁迫对生姜苗期形态变化及生理指标的影响,建立生姜耐盐评价体系,发掘耐盐种质资源,为生姜耐盐品种选育提供理论依据。【方法】以我国5个生姜主产区的主栽品种为试验材料,设置对照(CK)与盐胁迫(NaCl)2个处理,利用主成分分析将不同处理条件下生姜的生理生化指标等单项指标整合为3个综合指标,结合隶属函数法进行耐盐性综合评价,并分析水通道蛋白(AQP)基因在耐盐品种与敏感品种中不同的表达模式。【结果】在盐胁迫下,各生姜品种的株高、茎粗、叶片数、根系活力、叶片水势和叶片渗透势均下降。叶片的过氧化氢(H2O2)含量、丙二醛(MDA)含量和过氧化物酶(POD)活性均升高。超氧化物歧化酶(SOD)活性在贵州黄姜中显著升高(P<0.05,下同),在其他4个品种中下降。过氧化氢酶(CAT)活性在山东大姜中下降,在其他4个品种中升高。苯丙氨酸解氨酶(PAL)活性在山东大姜和竹根姜中下降,在其他3种品种中升高。相关分析结果表明,株高、茎粗和叶片数均与综合评价值(D值)呈显著正相关;叶片MDA含量、H2O2含量、水势和渗透势与D值呈负相关;根系活力与D值呈极显著正相关(P<0.01)。生姜耐盐性由强到弱排序依次为山东大姜、贵州黄姜、凤头姜、罗平小黄姜、竹根姜。8个AQP基因的表达模式分析显示,山东大姜叶片中7个AQP基因在盐胁迫处理后表达下调,根部4个AQP基因表达下调;竹根姜叶片中3个AQP基因表达下调,根部6个AQP基因表达下调。【结论】5个生姜品种苗期耐盐性评价结果表明,山东大姜耐盐性最强,竹根姜耐盐性最弱。株高、茎粗、叶片数和根系活力可作为生姜耐盐品种筛选的主要参考指标。Abstract: 【Objective】To investigate the effects of salt stress on morphological changes and physiological indexes of ginger at seedling stage,establish a salt-tolerant evaluation system for ginger,explore salt-tolerant germplasm resources, which could provide theoretical reference for the selection and breeding of salt-tolerant varieties of ginger.【Method】The main plant varieties from 5 major ginger producing areas in China were used as experimental materials,and 2 treatments, control (CK)and salt stress(NaCl),were set up. Principal component analysis was used to integrate the physiological and biochemical indexes and other individual indexes into 3 comprehensive indexes,and combined with the method of the membership function to carry out a comprehensive evaluation of salt tolerance,and to analyze the expression of the aquaporin protein(AQP)gene in the salt-tolerant varieties and the sensitive varieties.【Result】The increase in plant height,stem thickness,number of leaf,root vigour,leaf water potential and leaf osmotic potential decreased in all ginger varieties under salt stress. Hydrogen peroxide(H2O2)content,malondialdehyde(MDA)content and peroxidase(POD)activity of leaves were increased. Superoxide dismutase(SOD)activity was significantly increased in Guizhou ginger(P<0.05, the same below)but decreased in the other 4 varieties. Catalase(CAT)activity was decreased in Shandong big ginger but elevated in the other 4 varieties. Phenylalanine deaminase(PAL)activity decreased in Shandong big ginger and Zhugen ginger,but increased in the other 3 varieties. Plant height,stem diameter and number of leaf were significantly and positively correlated with the comprehensive evaluation value(D value). Leaf MDA content,H2O2 content,water potential and osmotic potential were negatively correlated with D values,root vigour was extremely significantly and positively correlated withD value(P<0.01). The salt tolerance of ginger was ranked from the strongest to the weakest as Shandong big ginger,Guizhou yellow ginger,Fengtou ginger,Luoping small yellow ginger and Zhugen ginger. Expression pattern analysis of 8 AQP genes showed that 7 AQP genes were down-regulated in Shandong big ginger leaves and 4 AQP genes were down-regulated in roots after salt stress treatment;3 AQP genes were down-regulated in leaves and 6 AQP genes were down-regulated in roots of Zhugen ginger.【Conclusion】Salt tolerance evaluation of 5 ginger varieties at seedling stage indicates that Shandong big ginger has the strongest salt tolerance and Zhugen ginger has the weakest salt tolerance. Plant height,stem diameter,number of leaf and root vigour can be the main reference indexes for screening ginger salt-tolerant varieties.
-
-
丁守鹏,张国新,陈猛,姚玉涛,孙叶烁,丁冯洁,苏锦刚 . 2021. 基于隶属函数法的葡萄耐盐性评价[J]. 安徽农业科学,49(24):75-77.[Ding S P,Zhang G X,Chen M,Yao Y T,Sun Y S,Ding F J,Su J G. 2021. Evaluation of salt tolerance of grape based on membership function method[J]. Journal of Anhui Agricultural Sciences,49(24):75-77.]doi:10.3969/j.issn.0517-6611.2021.24.017. 董春娟,李亮,曹宁,尚庆茂,张志刚. 2015. 苯丙氨酸解氨酶在诱导黄瓜幼苗抗寒性中的作用[J]. 应用生态学报,26(7):2041-2049.[Dong C J,Li L,Cao N,Shang Q M,Zhang Z G. 2015. Roles of phenylalanine ammonia-lyase in low temperature tolerance in cucumber seedlings[J].Chinese Journal of Applied Ecology,26(7):2041-2049.]doi:10.13287/j.1001-9332.20150527.006. 董杰,陈新新,杨倩,张怀渝,陈洋尔. 2018. 高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较[J]. 麦类作物学报,38(3):315-322.[Dong J,Chen X X,Yang Q,Zhang H Y,Chen Y E. 2018. Effects of high light,water and salt stresses on photosynthtic characteristics and antioxidant enzyme in wheat [J]. Journal of Triticeae Crops,38(3):315-322.]doi:10.7606/j.issn.1009-1041.2018.03.09. 高伟,席克勇,尹军良,刘奕清,朱永兴,贾切 . 2023. 外源SiNPs对盐胁迫下生姜幼苗生长和生理特性的影响[J].西北农林科技大学学报(自然科学版),51(9):109-118.[Gao W,Xi K Y,Yin J L,Liu Y Q,Zhu Y X,Jia Q. 2023.Effects of exogenous SiNPs on growth and physiological characteristics of ginger seedlings under salt stress[J]. Journal of Northwest A&F University(Natural Science Edition),51(9):109-118.]doi:10.13207/j.cnki.jnwafu.2023. 09.012. 高伟 . 2023. 生姜的耐盐性鉴定及外源硅对盐胁迫的缓解效应[D]. 荆州:长江大学 .[Gao W. 2023. Salt tolerance identification of ginger and mitigation effect of exogenous silicon on salt stress[D]. Jingzhou:Yangtze University.] 高雪,朱林,苏莹. 2018. 基于隶属函数法的甜高粱孕穗期耐盐性综合评价[J]. 南方农业学报,49(9):1736-1744.[Gao X,Zhu L,Su Y. 2018. Comprehensive evaluation on salt tolerance of Sorghum bicolor at booting stage by membership function method[J]. Journal of Southern Agriculture, 49(9):1736-1744.]doi:10.3969/j.issn.2095-1191.2018. 09.08. 谷娇娇,胡博文,贾琰,沙汉景,李经纬,马超,赵宏伟. 2019.盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志,(4):176-182.[Gu J J,Hu B W,Jia Y,Sha H J,Li J W,Ma C,Zhao H W. 2019. Effects of salt stress on root related traits and yield of rice[J]. Crops,(4):176-182.]doi: 10.16035/j.issn.1001-7283.2019.04.027. 何子华 . 2022. 盐胁迫下胀果甘草和乌拉尔甘草渗透调节特征的比较分析[D]. 兰州:兰州大学 .[He Z H. 2022.Comparative analysis on the osmoregulatory characteristics of Glycyrrhiza inflata and G. uralensis under salt stress[D]. Lanzhou:Lanzhou University.]doi:10.27204/d.cnki.glzhu.2022.003456. 李港,彭慧敏,蔡小东,马佳伟,马慧慧,尹军良,尚淼,张中华,朱永兴,刘奕清. 2022. 5个生姜品种对淹水胁迫的生理响应及耐涝性评价[J]. 南方农业学报,53(8):2196-2204.[Li G,Peng H M,Cai X D,Ma J W,Ma H H ,Yin J L,Shang M,Zhang Z H,Zhu Y X,Liu Y Q. 2022. Physiological response of 5 ginger varieties to waterlogging stress and evaluation of their waterlogging tolerance[J].Journal of Southern Agriculture,53(8):2196-2204.]doi: 10.3969/j.issn.2095-1191.2022.08.012. 刘谢香,常汝镇,关荣霞,邱丽娟. 2020. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报,46(1):1-8.[Liu X X,Chang R Z,Guan R X,Qiu L J. 2020. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm[J]. Acta Agronomica Sinica,46(1):1-8.]doi:10.3724/SP.J.1006. 2020.94062. 鲁雨晴,崔亚宁,张原,姚小敏,李晓娟. 2020. 植物水通道蛋白PIPs亚细胞定位转运的研究进展[J]. 电子显微学报, 39(6):779-786.[Lu Y Q,Cui Y N,Zhang Y,Yao X M,Li X J. 2020,Advances in research on subcellular redistribution of plant plasma membrane aquaporin[J]. Journal of Chinese Electron Microscopy Society,39(6):779-786.]doi:10.3969/j.issn.1000-6281.2020.06.020. 吕昕培. 2022. 梭梭木质素合成对盐和渗透胁迫的响应及HaLAC15和HaCOMT的功能鉴定[D]. 兰州:兰州大学.[Lü X P. 2022. Responses of lignin synthesis in Haloxylon ammodendron to salt and osmotic stresses and functional identification of HaLAC15 and HaCOMT[D]. Lanzhou:Lanzhou University.]doi:10.27204/d.cnki.glzhu.2022. 003698. 彭慧敏,马佳伟,李港,蔡小东,王显凤,尹军良,刘奕清,朱永兴. 2023. 生姜—葡萄立体间作模式对生姜夏季的生长、光合及抗氧化酶的影响[J]. 山东农业大学学报(自然科学版),54(2):159-165.[Peng H M,Ma J W,Li G,Cai X D,Wang X F,Yin J L,Liu Y Q,Zhu Y X. 2023. Effects of three-dimensional pattern intercropping grape and ginger on photosynthesis,growth and antioxidase of Zingiber officinale Rosc. in summer[J]. Journal of Shandong Agricultural University(Natural Science Edition),54(2):159-165.]doi:10.3969/j.issn.1000-2324.2023.02.001. 彭静静,张静,王美娜,安文静,王凯婕,刘亚菲,岳柯,韦梓丰,侯兰兰,罗琴星,毕一凡,梁卫红. 2019. 过表达水稻OsAQP 增强转基因拟南芥耐盐性[J]. 中国生物化学与分子生物学报,35(6):678-686.[Peng J J,Zhang J,Wang M N,An W J,Wang K J,Liu Y F,Yue K,Wei Z F,Hou L L,Luo Q X,Bi Y F,Liang W H. 2019. Overexpression of rice OsAQP enhances salt tolerance of transgenic Arabidopsis thaliana[J]. Chinese Journal of Biochemistry and Molecular Biology,35(6):678-686.]doi:10.13865/j.cnki.cjbmb.2019.06.14. 秦曼丽,朱永兴,刘续立,刘燃,李姗蓉,张中华,袁继荣,刘奕清. 2022. 外源壳聚糖对干旱胁迫下生姜幼苗光合特性及水分代谢的影响[J]. 中国瓜菜,35(9):48-56.[Qin M L,Zhu Y X,Liu X L,Liu R,Li S R,Zhang Z H,Yuan J R,Liu Y Q. 2022. Exogenous chitosan affects photosynthetic characteristics and water metabolism of ginger seedling under drought stress[J]. China Cucurbits and Vegetables, 35(9):48-56.]doi:10.16861/j.cnki.zggc.2022.0223. 秦余,田春尧,赵咏洋,黄思沛,宋思敏,廖海. 2022. 拟南芥PAL 基因家族鉴定及表达模式分析[J]. 四川大学学报(自然科学版),59(6):172-178.[Qin Y,Tian C Y,Zhao Y Y,Huang S P,Song S M,Liao H. 2022. Identification and expression pattern analysis of PAL family genes in Arabidopsis thaliana[J]. Journal of Sichuan University(Natural Science Edition),59(6):172-178.]doi:10.19907/j.0490-6756.2022.066004. 孙琳琳,辛士超,强晓晶,程宪国. 2015. 非生物胁迫下植物水通道蛋白的应答与调控[J]. 植物营养与肥料学报,21(4):1040-1048.[Sun L L,Xin S C,Qiang X J,Cheng X G. 2015. Responsive regulation of aquaporins in the plants exposed to abiotic stresses[J]. Journal of Plant Nutrition and Fertilizers,21(4):1040-1048.]doi:10.11674/zwyf. 2015.0424. 王苗苗,周向睿,梁国玲,赵桂琴,焦润安,柴继宽,高雪梅,李娟宁. 2020. 5份燕麦材料苗期耐盐性综合评价[J]. 草业学报,29(8):143-154.[Wang M M,Zhou X R,Liang G L,Zhao G Q,Jiao R A,Chai J K,Gao X M,Li J N. 2020.A multi-trait evaluation of salt tolerance of 5 oat germplasm lines at the seedling stage[J]. Acta Prataculturae Sinica,29(8):143-154.]doi:10.11686/cyxb2019492. 王佺珍,刘倩,高娅妮,柳旭. 2017. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报,37(16):5565-5577.[Wang Q Z,Liu Q,Gao Y N,Liu X. 2017. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica,37(16):5565-5577.]doi:10. 5846/stxb201605160941. 於志远,向元园,刘奕清,蔡小东. 2021. 4个生姜品种的品比试验[J]. 湖南农业科学,(10):1-5.[Yu Z Y,Xiang Y Y,Liu Y Q,Cai X D. 2021. Analyses on agronomic traits,active compound contents and antioxidant activities of four ginger cultivars[J]. Hunan Agricultural Sciences,(10):1-5.]doi:10.16498/j.cnki.hnnykx.2021.010.001. 曾黎明,曾坚. 2020. 水通道蛋白在植物抗逆中的功能及调控研究进展[J]. 热带农业科学,40(7):59-65.[Zeng L M,Zeng J. 2020. Research progress on the function and regulation of aquaporin in plant response to stress[J]. Chinese Journal of Tropical Agriculture,40(7):59-65.]doi:10. 12008/j.issn.1009-2196.2020.07.010. 张玲玲,周洁,刘燃,罗怀海,朱永兴,刘奕清. 2023. 生姜抗姜瘟病品种资源鉴定及其抗病生化机制[J]. 植物保护学报,50(3):767-779.[Zhang L L,Zhou J,Liu R,Luo H H,Zhu Y X,Liu Y Q. 2023. Identification of resistance of ginger varieties to bacterial wilt and its biochemical basis[J].Journal of Plant Protection,50(3):767-779.]doi:10.13802/j.cnki.zwbhxb.2023.2021225. 朱永兴,夏雨晨,刘乐承,尹军良,马东方. 2019. 外源硅对植物抗盐性影响的研究进展[J]. 植物营养与肥料学报,25(3):498-509.[Zhu Y X,Xia Y C,Liu L C,Yin J L,Ma D F. 2019,Beneficial effects of silicon on salt tolerance in plants[J]. Journal of Plant Nutrition and Fertilizers,25(3): 498-509.]doi:10.11674/zwyf.18094. Kirch H H,Vera-Estrella R,Golldack D,Quigley F,Michalowski C B,Barkla B J,Bohnert H J. 2000. Expression of water channel proteins in Mesembryanthemum crystallinum[J]. Plant Physiology,123(1):111-124. doi:10.1104/pp. 123.1.111.
Li G,Ma J W,Yin J L,Guo F L,Xi K Y,Yang P H,Cai X D,Jia Q,Li L,Liu Y Q,Zhu Y X. 2022. Identification of reference genes for reverse transcription-quantitative PCR analysis of ginger under abiotic stress and for postharvest biology studies[J]. Frontiers in Plant Science,13:893495.doi:10.3389/fpls.2022.893495.
Liao Y D,Lin K H,Chen C C,Chiang C M. 2016. Oryza sativa protein phosphatase 1a(OsPP1a)involved in salt stress tolerance in transgenic rice[J]. Molecular Breeding,36:1-19.doi:10.1007/s11032-016-0446-2.
Peng H M,Hu H J,Xi K Y,Zhu X M,Zhou J,Yin J L,Guo F L,Liu Y Q,Zhu Y X. 2022. Silicon nanoparticles enhance ginger rhizomes tolerance to postharvest deterioration and resistance to Fusarium solani[J]. Frontiers in Plant Science,13:816143. doi:10.3389/fpls.2022.816143.
Zhu Y X,Jia J H,Yang L,Xia Y C,Zhang H L,Jia J B,Zhou R,Nie P Y,Yin J L,Ma D F,Liu L C. 2019. Identification of cucumber circular RNAs responsive to salt stress[J].BMC Plant Biology,19(1):164. doi:10.1186/s12870-019-1712-3.
Zhu Y X,Jiang X C,Zhang J,He Y,Zhu X M,Zhou X K,Gong H J,Yin J L,Liu Y Q. 2020. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins[J]. Plant Physiology and Biochemistry,156:209-220. doi:10.1016/j.plaphy.2020.09.014.
Zhu Y X,Xu X B,Hu Y H,Han W H,Yin J L,Li H L,Gong H J. 2015. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L[. J]. Plant Cell Reports, 34(9):1629-1646. doi:10.1007/s00299-015-1814-9.
计量
- 文章访问数: 27
- HTML全文浏览量: 0
- PDF下载量: 3