Machenism of mangiferin suppressing the inflammatory response induced by lipopolysaccharide in mouse alveolar macrophage
-
摘要: 【目的】探究芒果苷抑制脂多糖(LPS)诱导的炎症反应作用机制,为筛选治疗脓毒症的候选药物提供科学依据。【方法】选取小鼠肺泡巨噬细胞(MH-S)为研究对象,通过CCK-8试剂检测芒果苷对MH-S细胞的毒性作用,根据细胞毒性试验确定芒果苷的作用浓度为100 μg/mL,以正常培养的MH-S细胞为对照,使用10 μg/mL LPS处理24 h构建体外炎症模型(LPS组),再以100 μg/mL芒果苷干预24 h(干预组);通过ELISA检测MH-S细胞上清液中的炎症因子(IL-1β、TNF-α、IL-6和IL-18)含量,采用实时荧光定量PCR检测IL-1β、TNF-α、IL-6和IL-18基因表达情况,并以Westernblotting和免疫荧光法检测TLR4/NF-κB信号通路的变化。【结果】芒果苷浓度低于287.60 μg/mL时,对MH-S细胞无明显的毒性作用。与对照组相比,LPS组MH-S细胞中的IL-1β、TNF-α、IL-6和IL-18基因相对表达量极显著升高(P<0.01,下同),细胞上清液中的IL-1β、TNF-α、IL-6和IL-18含量显著(P<0.05,下同)或极显著升高;但以芒果苷干预后,IL-1β、TNF-α、IL-6和IL-18基因的相对表达量及其分泌水平均显著降低,表明芒果苷能有效抑制LPS诱导MH-S细胞的炎症反应。此外,LPS组MH-S细胞中的NF-κB基因相对表达量与蛋白表达水平极显著高于对照组,经芒果苷干预后NF-κB基因相对表达量与蛋白表达水平均显著下降,表明芒果苷能有效抑制LPS诱导MH-S细胞中核转录因子的表达;LPS组MH-S细胞表面的TLR4表达水平明显升高,但经芒果苷干预后MH-S细胞表面的TLR4表达水平明显降低,说明芒果苷能有效抑制LPS诱导MH-S细胞表面TLR4的表达。【结论】芒果苷对MH-S细胞的增殖无明显抑制作用,其半数增殖抑制率(IC50)为287.60 μg/mL;芒果苷对LPS诱导的MH-S细胞炎症反应具有良好的保护作用,其作用机制可能与抑制TLR4/NF-κB信号通路激活而减少炎症因子的分泌有关。
-
关键词:
- 芒果苷 /
- 小鼠肺泡巨噬细胞(MH-S) /
- 脂多糖(LPS) /
- 炎症因子 /
- TLR4/NF-κB信号通路
Abstract: 【Objective】The objective of this study was to analyze the inhibition mechanisms of mangiferin on lipopolysaccharide(LPS)-induced inflammatory response,with the goal of identifying a potential therapeutic agent for sepsis. 【Method】In this research,mouse alveolar macrophage(MH-S)were chosen as the subject of investigation,and the cytotoxic impact of mangiferin on MH-S was assessed using the CCK-8 assay. According to the cytotoxicity test,the concentration of mangiferin was 100 μg/mL. With normal cultured MH-S as the control,10 μg/mL LPS was used for 24 h to construct an in vitro inflammatory model(LPS group),and then 100 μg/mL mangiferin was intervened for 24 h(intervention group). The contents of inflammatory factors(IL-1β,TNF-α,IL-6 and IL-18)in MH-S supernatants were measured by ELISA,gene expression of IL-1β,TNF-α,IL-6 and IL-18 was assessed using real-time fluorescence quantitative PCR, and changes in TLR4/NF-κB signaling pathway were measured by Western blotting and immunofluorescence.【Result】 Mangiferin did not have obvious toxic effect on MH-S when its concentration was below 287.60 μg/mL. Compared with the control group,the relative expression of IL-1β,TNF-α,IL-6 and IL-18 was extremely significantly increased in the LPS group(P<0.01,the same below),and the contents of IL-1β,TNF-α,IL-6 and IL-18 in the cell supernatant was significantly(P<0.05,the same below)or extremely significantly increased. Following treatment with mangiferin intervention,there was significant decrease in both relative expression levels of IL-1β,TNF-α,IL-6 and IL-18 genes and their secretion levels,suggesting that mangiferin could alleviate inflammatory response in MH-S induced by LPS. In addition, relative expression of NF-κB gene and protein expression level in MH-S of LPS group were extremely significantly higher than that of the control group,and the relative expression of NF-κB gene and protein expression level decreased significantly after mangiferin intervention,indicating that mangiferin could effectively inhibit expression of nuclear transcription factors in MH-S induced by LPS;the TLR 4 expression level on the surface of MH-S of LPS group was greatly increased,but the TLR 4 expression level on MH-S surface decreased greatly after mangiferin intervention,indicating that mangiferin could effectively inhibit TLR 4 expression on the surface of MH-S induced by LPS.【Conclusion】Mangiferin has no obvious inhibitory effect on the proliferation of MH-S cells,and the half proliferation inhibition rate(IC50)of mangiferin is 287.60 μg/mL. Mangiferin has fine protective effect against the LPS-induced inflammatory response in MH-S, and the mechanism of action may be related to the reduction of inflammatory factor secretion by inhibiting the activation of TLR4/NF-κB signaling pathway. -
-
曹平,苏露煜. 2023. 决明子多糖调节IL-6/JAK2/STAT3通路对高糖诱导视网膜神经节细胞损伤的影响[J]. 河北医药,45(9):1297-1301.[Cao P,Su L Y. 2023. Influence of cassia polysaccharide on high glucose-induced retinal ganglion cell injury by regulating the IL-6/AK2/STAT3 pathway[J]. Hebei Medical Journal,45(9):1297-1301.]doi: 10.3969/i.issn.1002-7386.2023.09.003. 范香成,焦广洋,张凤,韩军,陈万生. 2024. 芒果苷的药效作用研究进展[J]. 海军军医大学学报,45(2):219-226.[Fan X C,Jiao G Y,Zhang F,Han J,Chen W S. 2024.Pharmacodynamics of mangiferin:Research progress[J].Academic Journal of Naval Medical University,45(2): 219-226.]doi:10.16781/j.CN31-2187/R.20220402. 李光第,赵学凌,周如丹. 2017. IL-18激活NF-κB细胞信号通路对人脐静脉内皮细胞损伤作用的体外研究[J]. 重庆医学,46(24):3313-3317.[Li G D,Zhao X L,Zhou R D. 2017. In vitro study on injury effect of lL-18 activating NF-κB cell signal pathway on human umbilical vein endothe lial cells[J]. Chongqing Medicine,46(24):3313-3317.]doi:10.3969/i.issn.1671-8348.2017.24.001. 李静,武万强,杨靖亚. 2023. 紫草素可抑制在 RAW264.7 巨噬细胞和斑马鱼幼虫中由脂多糖诱导的炎症反应[J]. 甘肃农业大学学报,58(1):38-45.[Li J,Wu W Q,Yang J Y. 2023. Shikonin inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages and zebrafish larvae[J]. Journal of Gansu Agricultural University,58(1):38-45.]doi:10.13432/j.cnki.jgsau.2023.01.005. 李秀楠,王海云,吴倩,徐敏. 2023. 芒果苷在扁桃叶与芒果叶中含量的比较研究[J]. 产业科技创新,5(6):48-50.[Li X N,Wang H Y,Wu Q,Xu M. 2023. Comparative study on the content of mangiferin in almond and mango leaves[J]. Industrial Technology Innovation,5(6):48-50.] 刘欢. 2023. 转录因子ZBED6在猪骨骼肌生长和脓毒症肌萎缩中的作用及机制研究[D]. 杨凌:西北农林科技大学.[Liu H. 2023. The role and mechanism of transcription fac tor ZBED6 in porcine skeletal muscle growth and sepsis induced muscle atrophy[D]. Yangling:Northwest A&F University.]doi:10.27409/d.cnki.gxbnu.2023.002377. 刘睿喆,陈德胜. 2023. 新芒果苷对小鼠磨损颗粒诱导骨溶解动物模型中炎症骨溶解影响的研究[J]. 宁夏医科大学学报,45(9):871-875.[Liu R Z,Chen D S. 2023. The research on effects of neomangiferin on inflammatory osteolysis in mouse animal models induced by titanium particles[J]. Journal of Ningxia Medical University,45(9):871-875.]doi:10.16050/j.cnki.issn1674-6309.2023.09.002. 孟云霞. 2020. 芒果苷激活Nrf2抑制心肌纤维化——基于谷氨酰胺分解和谷氨酸重分配的研究[D]. 石家庄:河北中医学院.[Meng Y X. 2020. Mangiferin activates Nrf2 to attenuate cardiac fibrosis via redistributing glutaminolysisderived glutamate[D]. Shijiazhuang:Hebei University of Chinese Medicine.]doi:10.27982/d.cnki.ghbyz.2020.000 167. 潘敏丽,黄国定,蔡冠虎,卢宏全. 2024. 基于Nrf2-GPX4铁死亡途径探讨芒果苷对大鼠心肌缺血再灌注损伤的作用机制[J]. 中西医结合心脑血管病杂志,22(4):646-652.[Pan M L,Huang G D,Cai G H,Lu H Q. 2024. Effect of mangiferin on myocardial ischemia-repertusion injury in rats based on Nrf2-GPX4 ferroptosis pathway[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease,22(4):646-652.]doi:10.12102/j.issn.1672-1349. 2024.04.011. 韦啟球,高思,冯艺萍,裴世成,刘雪萍. 2023. 芒果苷对心肌细胞损伤的保护作用及对NFATc4表达的影响[J]. 中国药房,34(20):2454-2458.[Wei Q Q,Gao S,Feng Y P,Pei S C,Liu X P. 2023. Protective effects of mangiferin against myocardial cell damage and its effects on the expression of NFATc4[J]. China Pharmacy,34(20):2454-2458.]doi:10.6039/i.issn.1001-0408.2023.20.02. 卫智权,邓家刚,阎莉,包传红. 2011. 芒果苷对脂多糖诱导慢性炎症的抗炎作用[J]. 中药药理与临床,27(2):43-45.[Wei Z Q,Deng J G,Yan L,Bao C H. 2011. The antiinflammatory actions of mangiferin on the chronic inflam mation induced by lipopolysaccharide[J]. Pharmacology and Clinics of Chinese Materia Medica,27(2):43-45.]doi: 10.13412/j.cnki.zyyl.2011.02.017. 谢开会. 2023. Lnc001776通过ssc-let-7i-5p/IL-6调控CPB2毒素诱导IPEC-J2细胞损伤的作用机制研究[D]. 兰州:甘肃农业大学.[Xie K H. 2023. Functional mechanism of Lnc001776 modulating CPB2 toxin-induced injury of IPEC-J2 cells via ssc-let-7i-5p/IL-6[D]. Lanzhou:Gansu Agricultural University.]doi:10.27025/d.cnki.ggsnu.2023. 000035. 张旋. 2018. 脓毒症在H7N9禽流感以及侵袭性肺曲霉菌病中的临床研究[D]. 杭州:浙江大学.[Zhang X. 2018. Clini cal study of sepsis in avian-origin influenza A(H7N9)and invasive pulmonary aspergillosis[D]. Hangzhou:Zhejiang University] Ciesielska A,Matyjek M,Kwiatkowska K. 2021. TLR4 and CD14 trafficking and its influence on LPS-induced proinflammatory signaling[J]. Cellular and Molecular Life Sciences,78:1233-1261. doi:10.1007/s00018-020-03656-y.
Dou W,Zhang J J,Ren G Y,Ding L L,Sun A N,Deng C,Wu X J,Wei X H,Mani S,Wang Z T. 2014. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF- κB and MAPK signaling inactivation[J].International Immunopharmacology,23(1):170-178. doi: 10.1016/j.intimp.2014.08.025.
Feng M,Wei S Q,Zhang S D,Yang Y. 2022. Anti-inflammation and anti-pyroptosis activities of mangiferin via suppressing NF-κB/NLRP3/GSDMD signaling cascades[J]. International Journal of Molecular Sciences,23(17):10124. doi:10. 3390/ijms231710124.
Fomenko E V,Chi Y L. 2016. Mangiferin modulation of metabolism and metabolic syndrome[J]. BioFactors,42(5):492-503. doi:10.1002/biof.1309.
Gálvez-Rodríguez A,Ferino-Pérez A,Rodríguez-Riera Z,Rodeiro G I,Řeha D,Minofar B,Jáuregui-Haza U J. 2022.Explaining the interaction of mangiferin with MMP-9 and NF-kB:A computational study[J]. Journal of Molecular Modeling,28:266. doi:10.1007/s00894-022-05260-2.
Hu Q,Lyon C J,Fletcher J K,Tang W F,Wan M H,Hu T Y. 2021. Extracellular vesicle activities regulating macro phage- and tissue-mediated injury and repair responses[J].Acta Pharmaceutica Sinica B,11(6):1493-1512. doi:10. 1016/j.apsb.2020.12.014.
Ishida K,Nagatake T,Saika A,Kawai S,Node E,Hosomi K,Kunisawa J. 2023. Induction of unique macrophage subset by simultaneous stimulation with LPS and IL-4[J]. Frontiers in Immunology,14:1111729. doi:10.3389/fimmu.2023. 1111729.
Jia L,Sun P,Gao H,Shen J,Gao Y,Meng C,Fu S D,Yao H J,Zhang G. 2019. Mangiferin attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting TLR4/p65 and TGF-β1/Smad2/3 pathway[J]. Journal of Pharmacy and Pharmacology,71(6):1017-1028. doi:10.1111/jphp.13077.
Jiang Q Q,Chen X,Tian X,Zhang J M,Xue S M,Jiang Y Y,Liu T T,Wang X P,Sun Q B,Hong Y Q,Li C,Guo D Q,Wang Y,Wang Q Y. 2022. Tanshinone I inhibits doxorubicin-induced cardiotoxicity by regulating Nrf2 signaling pathway[J]. Phytomedicine,106:154439. doi:10. 1016/j.phymed.2022.154439.
Kolaczkowska E,Kubes P. 2013. Neutrophil recruitment and function in health and inflammation[J]. Nature Reviews Immunology,13(3):159-175. doi:10.1038/nri3399.
Liu L L,Guo H M,Song A M,Huang J H,Zhang Y,Jin S S,Li S T,Zhang L G,Yang C Z,Yang P S. 2020. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-κB and MAPK pathways[J]. BMC Immunology,21(1): 32. doi:10.1186/s12865-020-00355-y.
Lum P T,Sekar M,Gan S H,Jeyabalan S,Bonam S R,Rani N N I M,Ku-Mahdzir K M,Seow L J,Wu Y S,Subramani yan V,Fuloria N K,Fuloria S. 2022. Therapeutic potential of mangiferin against kidney disorders and its mechanism of action:A review[J]. Saudi Journal of Biological Sciences,29(3):1530-1542. doi:10.1016/j.sjbs.2021.11.016.
Morozkina S N,Nhung V T H,Generalova Y E,Snetkov P P,Uspenskaya M V. 2021. Mangiferin as new potential anticancer agent and mangiferin-integrated polymer systems—A novel research direction[J]. Biomolecules,11(1):79. doi: 10.3390/biom11010079.
Olona A,Hateley C,Muralidharan S,Wenk M R,Torta F,Behmoaras J. 2021. Sphingolipid metabolism during Toll-like receptor 4(TLR4)-mediated macrophage activation[J].British Journal of Pharmacology,178(23):4575-4587. doi: 10.1111/bph.15642.
Peng X Y,Lu Z X,He S,Zhang L H,Li Y. 2021. Blood-brain barrier disruption by lipopolysaccharide and sepsisassociated encephalopathy[J]. Frontiers in Cellular and Infection Microbiology,11:768108. doi:10.3389/fcimb.2021. 768108.
Sul O J,Ra S W. 2021. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-κB in lung epithelial cells[J]. Molecules,26(22):6949.doi:10.3390/molecules26226949.
Tang J,Diao P,Shu X H,Li L,Xiong L D. 2019. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells:In vitro assessment and a theoretical model[J]. Biomed Research Internal,2019:7039802. doi:10.1155/2019/7039802.
Tu H Y,Li Y L. 2023. Inflammation balance in skeletal muscle damage and repair[J]. Frontiers in Immunology,14:1133 355. doi:10.3389/fimmu.2023.1133355.
Walia V,Chaudhary S K,Sethiya K N. 2021. Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders[J]. Neurochemistry International,143:104939. doi:10.1016/j.neuint. 2020.104939.
Wang M D,Liang Y,Chen K Q,Wang M L,Long X H,Liu H L,Sun Y,He B.2022. The management of diabetes mellitus by mangiferin:Advances and prospects[J]. Nanoscale, 14:2119-2135. doi:10.1039/d1nr06690k.
Wang Y J,Che M X,Xin J G,Zheng Z,Li J B,Zhang S K. 2020. The role of IL-1β and TNF- α in intervertebral disc degeneration[J]. Biomedicine & Pharmacotherapy,131: 110660. doi:10.1016/j.biopha.2020.110660.
Zhang L J,Huang C,Fan S J. 2021. Mangiferin and organ fibrosis:A mini review[J]. BioFactors,47(1):59-68. doi:10. 1002/biof.1693.
Zhang L J,Liu C H,Yin L F,Huang C,Fan S J. 2023. Mangiferin relieves CCl4-induced liver fibrosis in mice[J]. Scientific Reports,13:4172. doi:10.1038/s41598-023-30582-3.
计量
- 文章访问数: 146
- HTML全文浏览量: 2
- PDF下载量: 21