基于SLAF-Seq的阿拉比卡咖啡遗传多样性分析

李学俊, 王步天, 赵猛, 施学东, 陈治华, 谢纯, 卢云峰, 董相书, 马银波, 葛宇

李学俊, 王步天, 赵猛, 施学东, 陈治华, 谢纯, 卢云峰, 董相书, 马银波, 葛宇. 2024: 基于SLAF-Seq的阿拉比卡咖啡遗传多样性分析. 南方农业学报, 55(6): 1583-1593. DOI: 10.3969/j.issn.2095-1191.2024.06.004
引用本文: 李学俊, 王步天, 赵猛, 施学东, 陈治华, 谢纯, 卢云峰, 董相书, 马银波, 葛宇. 2024: 基于SLAF-Seq的阿拉比卡咖啡遗传多样性分析. 南方农业学报, 55(6): 1583-1593. DOI: 10.3969/j.issn.2095-1191.2024.06.004
LI Xue-jun, WANG Bu-tian, ZHAO Meng, SHI Xue-dong, CHEN Zhi-hua, XIE Chun, LU Yun-feng, DONG Xiang-shu, MA Yin-bo, GE Yu. 2024: Genetic diversity of Coffea arabica based on SLAF-Seq technology. Journal of Southern Agriculture, 55(6): 1583-1593. DOI: 10.3969/j.issn.2095-1191.2024.06.004
Citation: LI Xue-jun, WANG Bu-tian, ZHAO Meng, SHI Xue-dong, CHEN Zhi-hua, XIE Chun, LU Yun-feng, DONG Xiang-shu, MA Yin-bo, GE Yu. 2024: Genetic diversity of Coffea arabica based on SLAF-Seq technology. Journal of Southern Agriculture, 55(6): 1583-1593. DOI: 10.3969/j.issn.2095-1191.2024.06.004

基于SLAF-Seq的阿拉比卡咖啡遗传多样性分析

基金项目: 

云南省“兴滇英才支持计划”青年人才专项(XDYC-QNRC-2022-0711)

云南省重点研发计划项目(202303AP140010)

云南省专家基层科研工作站项目(2021RYZJGZZ002)

云南省教育厅科学研究基金项目(2023Y0915)

详细信息
    作者简介:

    李学俊(1981-),https://orcid.org/0009-0001-3410-8189,教授,主要从事咖啡育种与栽培研究工作,E-mail:2003056@ynau.edu.cn

    通讯作者:

    葛宇(1982-),https://orcid.org/0009-0006-8091-0830,博士,副研究员,主要从事咖啡育种与栽培研究工作,E-mail:geyu@ynau.edu.cn

  • 中图分类号: S571.202.4

Genetic diversity of Coffea arabica based on SLAF-Seq technology

Funds: 

Yunnan Revitalization Talent Support Project Young Talents Project (XDYC-QNRC-2022-0711)

Yunnan Key Research and Development Project (202303AP140010)

Yunnan Expert Basic Scientific Research Station Project (2021RYZJGZZ002)

Scientific Research Fund Project of Yunnan Education Department (2023Y0915)

  • 摘要: 【目的】 采用特异性位点扩增片段测序(SLAF-Seq)技术对阿拉比卡咖啡种质资源进行遗传多样性分析,明确本地咖啡种质遗传背景,为阿拉比卡咖啡新品种选育提供理论依据。【方法】 以国内外40份阿拉比卡咖啡和4份非阿拉比卡咖啡(外类群对照)种质资源为材料,采用SLAF-Seq技术对其进行SNP标记开发及系统发育、群体遗传结构及主成分分析。【结果】 所有供试咖啡属种质资源测序共获得220.54 Mb数据,测序样品平均Reads数量为5012189条,测序平均Q30为95.90%,平均GC含量为39.48%。定位到参考基因组的Clean reads占所有Clean reads总数的百分比平均为95.05%。从44份咖啡属种质资源中共检测到214254个SLAF标签,平均每份样品SLAF标签数量为140742。SLAF标签在每份样本中的分布数量为46234~171026个。共开发出1186433个群体SNP分子标记,每个样品的SNP分子标记数目为381105~903823个,SNP分子标记完整度为32.12%~76.18%,杂合率为6.23%~17.49%。阿拉比卡咖啡SNP分布具有一定的区域集中性,主要集中在1c~11c这套来自其中一个亲本卡尼弗拉咖啡(中粒种)染色体组上。系统发育、群体遗传结构及主成分3种聚类结果显示,阿拉比卡咖啡铁皮卡型、阿拉比卡咖啡波邦型和含有Catimor的类群被明显区分开来独立成群,并明确了18份阿拉比卡咖啡种质的遗传背景。【结论】 40份阿拉比卡咖啡主要分为铁皮卡型类群、波邦型类群和含有Catimor商品种质的类群。采用SLAF-Seq技术所开发的SNP分子标记可准确分析阿拉比卡咖啡资源遗传多样性。
    Abstract: 【Objective】 The study aimed to analyze the genetic diversity of Coffea arabica germplasm resources using specific-locus amplified fragment sequencing(SLAF-Seq) technology. It identified the genetic backgrounds of local coffee germplasms, providing a theoretical basis for the breeding of new C. arabica varieties. 【Method】 The phylogeny, population genetic structure and principal component analysis were carried out through SNP markers using SLAF-Seq technology based on 40 C. arabica germplasms and 4 non-C. arabica germplasms(served as out-group control). 【Result】 The sequencing of all tested Coffea sp. germplasm resources yielded a total of 220.54 Mb of data. The average number of reads of sequencing sample was 5012189, with an average Q30 of 95.90%, and an average GC content of 39.48%. The percentage of clean reads localized to the reference genome constituted an average of 95.05% of all clean reads. A total of 214254 SLAF tags were detected from 44 coffee germplasm resources, with an average of 140742 SLAF tags per sample.The number of SLAF tags distributed in each sample ranged from 46234 to 171026. A total of 1186433 population SNP molecular markers were developed, with the number of SNP molecular markers per sample ranging from 381105 to 903823, the integrity of SNP markers ranging from 32.12% to 76.18%, and heterozygosity rate from 6.23% to 17.49%.The distribution of SNP in C. arabica showed some regional concentration, primarily on the chromosome set from 1c to 11c derived from one of the parents, C. canephora(Robusta coffee). The results of phylogeny, population genetic structure and principal component analysis displayed that the groups of C. arabica Typica type, groups of C. arabica Bourban type, and the groups containing Catimor were clearly distinguished from each other and the genetic backgrounds of 18 C.arabica germplasms were clarified. 【Conclusion】 The 40 C. arabica germplasms in the study are mainly divided into Typica type group, Bourbon type group and the group containing Catimor comercial germplasm. The genetic diversity of C. arabica resources can be accurately analyzed based on SNP molecular markers developed by SLAF-Seq technology.
  • 黄家雄,罗心平.2018.咖啡研究六十年(1952-2016年)[M].北京:科学出版社.[Huang J X,Luo X P.2018.Sixty years of coffee research(1952-2016)[M].Beijing:Science Press.]
    胡发广,刘红明,毕晓菲,付兴飞,李亚男,杨旸,吕玉兰,黄家雄.2022.不同海拔的小粒咖啡光合特性日变化研究[J].江西农业学报,34(5):53-58.[Hu F G,Liu H M,Bi X F,Fu X F,Li Y N,Yang Y,LüY L,Huang J X.2022.Diurnal variations of photosynthetic characteristics of Cof-fea arabica at different altitudes[J].Acta Agriculturae Jiangxi,34(5):53-58.]doi: 10.19386/j.cnki.jxnyxb.2022.05.010.
    黄丽芳,董云萍,王晓阳,陈鹏,林兴军,范睿,闫林.2017.云南咖啡资源遗传多样性的RAPD分析[J].中国热带农业,(5):48-52.[Huang L F,Dong Y P,Wang X Y,Chen P,Lin X J,Fan R,Yan L.2017.Genetic diversity analysis of coffee germplasms by RAPD markers[J].Chinese Jour-nal of Tropical Crops,(5):48-52.]doi: 10.3969/j.issn.1000-2561.2014.12.001.
    孙彩梅,罗吉,王琨,高佳琪,郝淑美,谭静.2019.云南不同产地及品种小粒种咖啡豆化学及卫生指标比较[J].西南农业学报,32(11):2550-2556.[Sun C M,Luo J,Wang K,Gao J Q,Hao S M,Tan J.2019.Comparison of chemical and health indexes of Coffea arabica bean from different producing areas and varieties in Yunnan[J].Southwest China Journal of Agricultural Sciences,32(11):2550-2556.]doi: 10.16213/j.cnki.scjas.2019.11.011.
    孙炳蕊,潘大建,李晨,江立群,张静,吕树伟,刘清,毛兴学,陈文丰,范芝兰.2022.基于SLAF标签测序分析广东省栽培稻种质资源的遗传结构及演化关系[J].作物学报,48(10):2483-2493.[Sun B R,Pan D J,Li C,Jiang L Q,Zhang J,LüS W,Liu Q,Mao X X,Chen W F,Fan Z L.2022.Genetic structure and evolutionary relationship for cultivated rice resources from Guangdong Province based on SLAF tag sequencing[J].Acta Agronomica Sinica,48(10):2483-2493.]doi: 10.3724/SP.J.1006.2022.12067.
    吴致君,李伟,王兴华,张成,蒋勋,黎盛,罗理勇,孙康,曾亮.2022.基于SLAF-Seq的茶组子房室数不稳定居群种质亲缘关系分析[J].园艺学报,49 (11):2455-2470.[Wu ZJ,Li W,Wang X H,Zhang C,Jiang X,Li S,Luo L Y,Sun K,Zeng L.2022.Genetic relationship analysis of the popu-lation germplasms of section Thea with unstable ovary locule number based on SLAF-Seq[J].Acta Horticulturae Sinica,49(11):2455-2470.]doi: 10.16420/j.issn.0513-353x.2021-0876.
    闫林,黄丽芳,王晓阳,周华,程金焕,李锦红,龙宇宙,董云萍.2019.基于ISSR标记的咖啡资源遗传多样性分析[J].热带作物学报,40(2):300-307.[Yan L,Huang L F,Wang X Y,Zhou H,Cheng J H,Li J H,Long Y Z,Dong YP.2019.Genetic diversity of coffee germplasms by ISSRmarkers[J].Chinese Journal of Tropical Crops,40(2):300-307.]doi: 10.3969/j.issn.1000-2561.2019.02.013.

    Alkimim E R,Caixeta E T,Sousa T V,Resende M D V,Silva F L,Sakiyama N S,Zambolim L.2020.Selective effi-ciency of genome-wide selection in Coffea canephora breeding[J].Tree Genetics&Genomes,16:41.doi: 10.1007/s11295-020-01433-3.

    Amalia F,Aditiawati P,Yusianto,Putri S P,Fukusaki E.2021.Gas chromatography/mass spectrometry-based metabolite profiling of coffee beans obtained from different altitudes and origins with various postharvest processing[J].Metabolomics,17(7):69.doi: 10.1007/s11306-021-01817-z.

    Anagbogu C F,Ilori C O,Bhattacharjee R,Olaniyi O O,Beck-les D M.2019.Gas chromatography-mass spectrometry and single nucleotide polymorphism-genotype-by-sequencing analyses reveal the bean chemical profiles and related-ness of Coffea canephora genotypes in Nigeria[J].Plants,8(10):425.doi: 10.3390/plants8100425.

    Bertrand B,Boulanger R,Dussert S,Ribeyre F,Berthiot L,Descroix F,Joët T.2012.Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality[J].Food Chemistry,135(4):2575-2583.doi: 10.1016/j.foodchem.2012.06.060.

    Charra J C,Garavito A,Guyeux C,Crouzillat D,Descombes P,Fournier C,Ly S N,Raharimalala E N,Rakotomalala J J,Stoffelen P,Janssens S,Hamon P,Guyot R.2020.Com-plex evolutionary history of coffees revealed by full plas-tid,genomes and 28,800 nuclear SNP analyses,with par-ticular emphasis on Coffea canephora(Robusta coffee)[J].Molecular Phylogenetics and Evolution,151:106906.doi: 10.1016/j.ympev.2020.106906.

    Chen Z Y,He Y C,Iqbal Y,Shi Y L,Huang H M,Yi Z L.2022.Investigation of genetic relationships within three Miscanthus species using SNP markers identified with SLAF-Seq[J].BMC Genomics,23(1):43.doi: 10.1186/s12864-021-08277-8.

    Depecker J,Verleysen L,Asimonyio J A,Hatangi Y,Kambale JL,Mwanga I M,Ebele T,Dhed’a B,Bawin Y,Staelens A,Stoffelen P,Ruttink T,Vandelook F,Honnay O.2023.Genetic diversity and structure in wild Robusta coffee(Coffea canephora A.Froehner) populations in Yangambi(DR Congo) and their relation to forest disturbance[J].Heredity (Edinb),130(3):145-153.doi: 10.1038/s41437-022-00588-0.

    Dubberstein D,Oliveira M G,Aoyama E M,Guilhen J H,Fer-reira A,Marques I,Ramalho J C,Partelli F L.2021.Diver-sity of leaf stomatal traits among Coffea canephora Pierre ex A.Froehner genotypes[J].Agronomy,11(6):1126.doi: 10.3390/agronomy11061126.

    Evanno G,Regnaut S,Goudet J.2005.Detecting the number of clusters of individuals using the software STRUCTURE:Asimulation study[J].Molecular Ecology,14(8):2611-2620.doi: 10.1111/j.1365-294X.2005.02553.x.

    Ge Y,Zhang F Y,Xie C,Qu P,Jiang K L,Du H B,Zhao M,Lu Y F,Wang B T,Shi X D,Li X J,Zhang C L.2023.Effects of different altitudes on Coffea arabica rhizospheric soil chemical properties and soil microbiota[J].Agronomy,13(2):471.doi: 10.3390/agronomy13020471.

    Ge Y,Zhang T,Wu B,Tan L,Ma F N,Zou M H,Chen H H,Pei J L,Liu Y Z,Chen Z H,Pei J L,Liu Y Z,Chen Z H,Xu Z N,Wang T.2019.Genome-wide assessment of avo-cado germplasm determined from specific length amplified fragment sequencing and transcriptomes:Population struc-ture,genetic diversity,identification,and application of race-specific markers[J].Genes (Basel),10(3):215.doi: 10.3390/genes10030215.

    Giles J A D,Ferreira A D,Partelli F L,Aoyama E M,Ramalho J C,Ferreira A,Falqueto A R.2019.Divergence and genetic parameters between coffea sp.genotypes based in foliar morpho-anatomical traits[J].Scientia Horticulturae,245:231-236.doi: 10.1016/j.scienta.2018.09.038.

    Hamon P,Grover C E,Davis A P,Rakotomalala J-J,Rahari-malala N E,Albert V A,Sceenath H,Stoffelen P,Mitchell S,Couturon E,Hamon S,de Kochko A,Crouzillat D,Rigoreau M,Sumirat U,Akaffou S,Guyot R.2017.Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolu-tion of caffeine content in its species GBS coffee phylogeny and the evolution of caffeine content[J].Molecular Phylogenetics and Evolution,109:351-361.doi: 10.1016/j.ympev.2017.02.009.

    Kassahun T,Kim G,Endashaw B,Borsch T.2014.ISSR finger-printing of Coffea arabica throughout Ethiopia reveals high variability in wild populations and distinguishes them from landraces[J].Plant Systematics and Evolution,300(5):881-897.doi: 10.1007/s00606-013-0927-2.

    Kozich J J,Westcott S L,Baxter N T,Highlander S K,Schloss P D.2013.Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform[J].Applied and Environmental Microbiology,79(17):5112-5120.doi: 10.1128/AEM.01043-13.

    Kumar S,Stecher G,Li M,Knyaz C,Tamura K.2018.MEGAX:Molecular evolutionary genetics analysis across com-puting platforms[J].Molecular Biology and Evolution,35(6):1547-1549.doi: 10.1093/molbev/msy096.

    Lebot V,Melteras M,Pilecki A,Labouisse J P.2020.Chemo-metric evaluation of cocoa (Theobroma cacao L.) and cof-fee(Coffea spp.) germplasm using HPTLC[J].Genetic Resources and Crop Evolution,67(4):895-911.doi: 10.1007/s10722-020-00888-6.

    Li H,Durbin R.2009.Fast and accurate short read alignment with Burrows-Wheeler transform[J].Bioinformatics,25(14):1754-1760.doi: 10.1093/bioinformatics/btp324.

    Li H,Handsaker B,Wysoker A,Fennell T,Ruan J,Homer N,Marth G,Abecasis G,Durbin R.2009.The sequence align-ment/map format and SAMtools[J].Bioinformatics,25(16):2078-2079.doi: 10.1093/bioinformatics/btp352.

    Lyu Y Z,Dong X Y,Huang L B,Zheng J W,He X D,Sun HN,Jiang Z P.2020.SLAF-Seq uncovers the genetic diver-sity and adaptation of Chinese elm (Ulmus parvifolia) in eastern China[J].Forests,11(1):80.doi: 10.3390/f11010080.

    McKenna A,Hanna M,Banks E,Sivachenko A,Cibulskis K,Kernysky A,Garimella K,Altshuler D,Gabriel S,Daly M,DePristo M A.2010.The genome analysis toolkit:AMapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Research,20(9):1297-1303.doi: 10.1101/gr.107524.110.

    Noia L R,Santos J G,Arruda V C D,Couto D P D,Braz R A,Senra J F D B,Partelli F L,Azevedo C F.2023.Diversity and structure of Coffea canephora from old seminal crops in Espírito Santo,Brazil:Genetic resources for coffee breeding[J].Tree Genetics&Genomes,19:19.doi: 10.1007/s11295-023-01594-x.

    Ogutu C,Fang T,Yan L,Wang L,Huang L F,Wang X Y,Ma BQ,Deng X B,Owiti A,Nyende A,Han Y P.2016.Characterization and utilization of microsatellites in the Coffea canephora genome to assess genetic association between wild species in Kenya and cultivated coffee[J].Tree Genetics&Genomes,12(3):54.doi: 10.1007/s11295-016-1014-y.

    Pritchard J K,Stephens M,Donnelly.2000.Inference of popu-lation structure using multilocus genotype data[J].Genetics,155(2):945-959.doi: 10.1093/genetics/155.2.945.

    Silva B S R D,Santana G C,Chaves C L,Androcioli L G,Ferreira R V,Sera G H,Charmetant P,Leroy T,Pot D,Domingues D S,Pereira L F P.2019.Population structure and genetic relationships between Ethiopian and Brazilian Coffea arabica genotypes revealed by SSR markers[J].Genetica,147(2):205-216.doi: 10.1007/s10709-019-00064-4.

    Spinoso-Castillo J L,Escamilla-Prado E,Aguilar-Rinco V H,Ramos V M,Santos G G D L,Perez-Rodriguez P,CoronaTorres T.2020.Genetic diversity of coffee(Coffea spp.) in Mexico evaluated by using DArTseq and SNP markers[J].Genetic Resources and Crop Evolution,67(7):1795-1806.doi: 10.1007/s10722-020-00940-5.

    Tran H T M,Vargas C A C,Lee L S,Furtado A,Smyth H,Henry R.2017.Variation in bean morphology and bio-chemical composition measured in different genetic groups of arabica coffee (Coffea arabica L.)[J].Tree Genetics&Genomes,13:54.doi: 10.1007/s11295-017-1138-8.

    Vossen H,Bertrand B,Charrier A.2015.Next generation variety development for sustainable production of arabica coffee(Coffea arabica L.):A review[J].Euphytica,204:243-256.doi: 10.1007/s10681-015-1398-z.

    Wang H,Yang B,Wang H,Xiao H X.2021.Impact of different numbers of microsatellite markers on population genetic results using SLAF-Seq data for Rhododendron species[J].Scientific Reports,11(1):8597.doi:10.1038/s41598-021-87945-x.Zaidan I R,Ferreira1 A,

    Zhang D P,Vega F E,Solano W,Su F Y,Infante F,Meinhardt L W.2021.Selecting a core set of nuclear SNP markers for molecular characterization of Arabica cofee (Coffea ara-bica L.) genetic resources[J].Conservation Genetics Resources,13(3):329-335.doi: 10.1007/s12686-021-01201-y.

    Zhou L,Vega F E,Tan H,Lluch A E R,Meinhardt L W,Fang W P,Mischke S,Irish B,Zhang D P.2016.Developing single nucleotide polymorphism(SNP) markers for the identification of coffee germplasm[J].Tropical Plant Biology,9:82-95.doi: 10.1007/s12042-016-9167-2.

计量
  • 文章访问数:  60
  • HTML全文浏览量:  6
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23

目录

    /

    返回文章
    返回