基于转录组测序的菜心茎尖组织开花相关基因差异表达分析

王帷千, 龚泽平, 陈妍娜, 李荣华, 黄红弟, 郭少龙, 李光光, 郭培国, 夏岩石

王帷千, 龚泽平, 陈妍娜, 李荣华, 黄红弟, 郭少龙, 李光光, 郭培国, 夏岩石. 2024: 基于转录组测序的菜心茎尖组织开花相关基因差异表达分析. 南方农业学报, 55(3): 721-732. DOI: 10.3969/j.issn.2095-1191.2024.03.013
引用本文: 王帷千, 龚泽平, 陈妍娜, 李荣华, 黄红弟, 郭少龙, 李光光, 郭培国, 夏岩石. 2024: 基于转录组测序的菜心茎尖组织开花相关基因差异表达分析. 南方农业学报, 55(3): 721-732. DOI: 10.3969/j.issn.2095-1191.2024.03.013
WANG Wei-qian, GONG Ze-ping, CHEN Yan-na, LI Rong-hua, HUANG Hong-di, GUO Shao-long, LI Guang-guang, GUO Pei-guo, XIA Yan-shi. 2024: Differential expression analysis of flowering-related genes in stem apex tissues of flowering Chinese cabbage based on transcriptome sequencing. Journal of Southern Agriculture, 55(3): 721-732. DOI: 10.3969/j.issn.2095-1191.2024.03.013
Citation: WANG Wei-qian, GONG Ze-ping, CHEN Yan-na, LI Rong-hua, HUANG Hong-di, GUO Shao-long, LI Guang-guang, GUO Pei-guo, XIA Yan-shi. 2024: Differential expression analysis of flowering-related genes in stem apex tissues of flowering Chinese cabbage based on transcriptome sequencing. Journal of Southern Agriculture, 55(3): 721-732. DOI: 10.3969/j.issn.2095-1191.2024.03.013

基于转录组测序的菜心茎尖组织开花相关基因差异表达分析

基金项目: 

广东省自然科学基金项目(2019A1515011587)

广东省乡村振兴战略专项(2022-NPY-03-001)

广州市科技计划项目(202102010414)

详细信息
    作者简介:

    王帷千(1999-),https://orcid.org/0009-0006-9194-6564,研究方向为蔬菜遗传育种,E-mail:1441498807@qq.com

    通讯作者:

    夏岩石(1976-),https://orcid.org/0009-0005-9808-5253,博士,副教授,主要从事蔬菜分子遗传育种研究工作,E-mail:xiayanshi922@gzhu.edu.cn

  • 中图分类号: S634.5

Differential expression analysis of flowering-related genes in stem apex tissues of flowering Chinese cabbage based on transcriptome sequencing

Funds: 

Guangdong Natural Science Foundation(2019A1515011587)

Guangdong Special Project for Rural Revitalization Strategy(2022-NPY-03-001)

Guangzhou Science and Technology Plan Project(202102010414)

  • 摘要: 【目的】基于转录组测序数据分析鉴定调控菜心抽薹开花相关的候选基因及信号通路,为今后阐明菜心抽薹开花调控分子机制及选育不同熟性菜心品种提供理论参考。【方法】对四九-19号(早熟型)和80天油绿(晚熟型)菜心的七叶期和现蕾期茎尖组织进行转录组测序,比较不同熟性菜心品种间及不同生长时期间的差异表达基因(DEGs),并对其进行GO功能注释及KEGG信号通路富集分析,结合FLOR-ID和UniProt数据库筛选出不同熟性菜心参与调控抽薹开花时间的候选基因及信号通路,通过实时荧光定量PCR验证转录组数据的可靠性。【结果】菜心茎尖组织转录组测序数据为81.93 Gb,经质控过滤后得到536679570条Clean reads,GC含量为47.24%~47.63%,Q20为97.11%~98.00%,Q30为91.97%~94.11%,平均87.98%的Clean reads比对上参考基因组。四九-19号菜心的七叶期和现蕾期间有1965个DEGs,80天油绿菜心的七叶期和现蕾期有6007个DEGs。GO功能注释结果显示,涉及分子功能的DEGs最多,主要注释为蛋白质二聚化活性、血红素结合和四吡咯结合等;其次是生物学过程,主要注释为小分子代谢过程、脂质代谢过程和离子运输等过程;细胞成分类别中,DEGs主要注释为核糖体、细胞器部分、染色体、核小体、蛋白质-DNA复合物和DNA包装复合体。KEGG信号通路富集结果显示,四九-19号菜心七叶期和现蕾期间的DEGs显著(Padj<0.05,下同)富集在光合生物中的碳固定及角质、木栓质和蜡生物合成等通路;80天油绿菜心七叶期和现蕾期间的DEGs显著富集在苯丙素生物合成、DNA复制和植物激素信号转导等通路。四九-19号和80天油绿菜心品种间有750个DEGs,其中16个为开花相关基因,涉及光周期途径、自主途径、赤霉素途径、春化途径、温度途径和年龄途径等,部分开花基因在2个菜心品种中表达量存在明显差异。实时荧光定量PCR检测结果与转录组测序结果相关性较强。【结论】菜心抽薹开花过程受到光周期途径、自主途径和赤霉素途径等关键途径调控,同时受到春化途径、温度途径和年龄途径的影响。虽然2个不同熟性菜心品种开花调控所涉及的途径基本相同,但开花调控途径中的基因响应不一致,导致二者开花时间存在差异。
    Abstract: 【Objective】The purpose of the study was to analyze and identify candidate genes and signal pathways related to the regulation of bolting and flowering of flowering Chinese cabbage based on transcriptome sequencing data, in order to explore the regulatory molecular mechanism of bolting and flowering of flowering Chinese cabbage and provide theoretical reference for the selection and breeding of flowering Chinese cabbage varieties with different maturity properties in the future. 【Method】Transcriptome sequencing was performed on stem apex tissues at both seven-leaf stage and budding stage of two flowering Chinese cabbage varieties, Siju-19 (early-maturing type) and 80 Tian Youlü (latematuring type). Differentially expressed genes (DEGs) between different maturity properties of flowering Chinese cabbage and between different growth stages were compared. GO functional annotation and KEGG signal pathway enrichment analysis were conducted to analyze DEGs. Candidate genes and signal pathways involved in the regulation of bolting and flowering time of flowering Chinese cabbage with different maturity properties were selected by integrating FLOR-ID and UniProt databases. The reliability of transcriptome data was verified through real-time fluorescence quantitative PCR. 【Result】Transcriptome sequencing data of flowering Chinese cabbage stem apex tissues was 81.93 Gb, and 536679570 clean reads were obtained after quality control filtering. The GC content ranged from 47.24% to 47.63%, with Q20 between 97.11% and 98.00%, and Q30 between 91.97% and 94.11%. On average, 87.98% of the data were aligned to the reference genome. A total of 1965 and 6007 DEGs were identified in Siju-19 and 80 Tian Youlü during the seven-leaf stage and the budding stage, respectively. GO functional annotation results revealed that the majority of the DEGs were associated with molecular function, mainly annotated as protein dimerization activity, heme binding and tetrapyrrole binding. Followed by biological process, which was mainly annotated as small molecule metabolic process, lipid metabolic process and ion transport. In the cellular component category, the DEGs were mainly annotated as ribosomes, organelles part, chromosomes, nuclesome, protein-DNA complexes and DNA packaging complexes. The results of KEGG signal pathway enrichment analysis showed that DEGs of Sijiu-19 flowering Chinese cabbage were significantly enriched (adj<0.05, the same below) in photosynthetic organisms pathways such ascarbon fixation , cutin, suberin and wax biosynthesis. DEGs of 80 Tian Youlü flowering Chinese cabbage were significantly enriched in pathways such as phenylpropanoid biosynthesis, DNA replication and plant hormone signal transduction during the seven-leaf stage and the budding stage. There were 750 DEGs between Sijiu-19 and 80 Tian Youlü, 16 of which were flowering-related genes, involving the photoperiod pathway, autonomous pathway, gibberellin pathway, vernalization pathway, temperature pathway and age pathway. Some flowering-related genes showed obvious differences in expression between the two flowering Chinese cabbage varieties. The results of real-time fluorescence quantitative PCR were strongly correlated with those of transcriptome sequencing. 【Conclusion】The bolting and flowering process of flowering Chinese cabbage is regulated by key pathways such as the photoperiodic pathway, autonomous pathway and gibberellin pathway, while it is also affected by vernalization pathway, temperature pathway and age pathway. The pathways involved in the flowering regulation of two flowering Chinese cabbage varieties of different maturity are fundamentally consistent. However, the inconsistent gene responses in the flowering regulatory pathway leads to the differences in flowering time between the two flowering Chinese cabbage varieties.
  • 关佩聪,刘厚诚,陈日远,罗冠英. 2005. 菜薹(菜心)生长动态与花茎形成[J]. 中国蔬菜,(2):16-18.[Guan P C,Liu H C,Chen R Y,Luo G Y. 2005. The growth and flowering stalk formation of Brassica campestris L. ssp. Chinensis(L.) Makino var. utilis Tsen et Lee[J]. China Vegetables, (2):16-18.] doi: 10.3969/j.issn.1000-6346.2005.02.006.
    李桂花,符梅,罗文龙,骆善伟,郭巨先. 2023. 菜薹抽薹时间、开花时间QTL定位及候选基因分析[J]. 中国农学通报, 39(13):19-24.[Li G H,Fu M,Luo W L,Luo S W,Guo J X. 2023. QTL Mapping and candidate gene analysis for bolting and flowering time of flowering Chinese cabbage[J]. Chinese Agricultural Science Bulletin,39(13):19-24.] doi: 10.11924/j.issn.1000-6850.casb2022-0330.
    刘栓桃,张志刚,李巧云,王淑芬,赵智中,卢金东,张晓燕,徐文玲,刘贤娴,付卫民. 2014. 光敏色素B基因(PHYB)启动子突变及与大白菜开花时间的关联分析[J]. 农业生物技术学报,22(7):853-861.[Liu S T,Zhang Z G,Li Q Y, Wang S F,Zhao Z Z,Lu J D,Zhang X Y,Xu W L,Liu X X,Fu W M. 2014. Association analysis between phytochrome B gene(PHYB) promoter mutantions and flowering time in Chinese cabbage(Brassica rapa L. ssp. pekinensis)[J]. Journal of Agricultural Biotechnology,22(7):853-861.] doi: 10.3969/j.issn.1674-7968.2014.07.008.
    苏蔚,肖柳英,孙光闻,刘厚诚,宋世威,陈日远. 2020. 转录因子BcWRKY22 在低温促进菜心抽薹开花中的功能分析[J]. 分子植物育种,18(12):3862-3870.[Su W,Xiao L Y, Sun G W,Liu H C,Song S W,Chen R Y. 2020. Function of transcriptional factor BcWRKY22 in early bolting and flowering at low temperature of Chinese flowering cabbage[J]. Molecular Plant Breeding,18(12):3862-3870.] doi: 10.13271/j.mpb.018.003862.
    陶鹏,赵彦婷,钟新民,岳智臣,雷娟利,李必元. 2020. 菜心BcFLC1 的SNP 变异与选择性剪接[J]. 分子植物育种, 18(22):7429-7435.[Tao P,Zhao Y T,Zhong X M,Yue Z C,Lei J L,Li B Y. 2020. SNP variation and alternative splicing of BcFLC1 of Chinese flowering cabbage[J]. Molecular Plant Breeding,18(22):7429-7435.] doi: 10.13271/j.mpb.018.007429.
    肖旭峰,曹必好,王勇,陈国菊,雷建军. 2008. 菜薹花芽分化及BrcuFLC 基因的克隆与表达[J]. 园艺学报,(6):827 832.[Xiao X F,Cao B H,Wang Y,Chen G J,Lei J J. 2008. Study on flower bud differentiation and cloning and expression of BrcuFLC in Brassica campestris L. ssp. chiensis(L.) Makino var. utilis[J]. Acta Horticulturae Sinica,( 6):827-832.] doi: 10.16420/j.issn.0513-353x.2008.06.010.
    肖旭峰,雷建军,曹必好,陈国菊. 2010. 菜心BrcuFCA基因的克隆与表达分析[J]. 基因组学与应用生物学,29(1):31 36.[Xiao X F,Lei J J,Cao B H,Chen G J. 2010. Cloning and expression analysis of BrcuFCA of flowering Chinese cabbage[J]. Genomics and Applied Biology,29(1):31 36.] doi: 10.3969/gab.029.000031.
    肖旭峰,张祎,杨寅桂. 2017. 菜心组蛋白乙酰转移酶基因BrcuHAC1 克隆与表达分析[J]. 核农学报,31(12):2323 2331.[Xiao X F,Zhang Y,Yang Y G. 2017. Cloning and expression analysis of histone acetyltransferase gene(Brcu-HAC1) in flowering Chinese cabbage[J]. Journal of Nuclear Agricultural Sciences,31(12):2323-2331.] doi:10. 11869/j.issn.100-8551.2017.12.2323.
    原远,李光光,郑岩松,乔燕春,周贤玉,张华,雷建军. 2018.基于主成分分析的菜心营养品质判定[J]. 南方农业学报,49(8):1568-1574.[Yuan Y,Li G G,Zheng Y S,Qiao C Y,Zhou X Y,Zhang H,Lei J J. 2018. Evaluation of nutritional quality of Chinese flowering cabbage based on principal component analysis[J]. Journal of Southern Agriculture, 49(8):1568-1574.] doi: 10.3969/j.issn.2095-1191.2018.08.15.
    岳智臣,陶鹏,赵彦婷,雷娟利,李必元. 2020. 菜心光敏色素B基因BcPHYB的鉴定与分析[J]. 分子植物育种,18(17):5570-5575.[Yue Z C,Tao P,Zhao Y T,Lei J L,Li B Y. 2020. Identification and analysis of phytochrome B gene BcPHYB in Chinese flowering cabbage[J]. Molecular Plant Breeding,18(17):5570-5575.] doi: 10.13271/j.mpb.018.005570.
    张帅威,周晓霞,梁雯雯,陈日远,宋世威. 2023. 菜心菜薹发育生理研究进展[J]. 中国瓜菜,36(5):8-15.[Zhang S W,Zhou X X,Liang W W,Chen R Y,Song S W. 2023. Recent advances in stalk development physiology of flowering Chinese cabbage[J]. China Cucurbits and Vegetables, 36(5):8-15.] doi: 10.16861/j.cnki.zggc.2023.0086.
    张雨萌,柴喜荣,康云艳,杨暹,毛妃凤,樊芳菲. 2017. 菜心的养分吸收和分配规律研究[J]. 安徽农业科学,45(35):55-59.[Zhang Y M,Chai X R,Kang Y Y,Yang X,Mao F F,Fan F F. 2017. Nutrient uptake and distribution law of flowering Chinese cabbage[J]. Journal of Anhui Agricultural Sciences,45(35):55-59.] doi:10.13989/j.cnki.0517 6611.2017.35.018.
    周贤玉,任海龙,孙艺嘉,邹集文,肖婉钰,张晶,许东林. 2022. 光照时长对菜心生长特性的影响[J]. 中国种业, (9):89-92.[Zhou X Y,Ren H L,Sun Y J,Zou J W,Xiao W Y,Zhang J,Xu D L. 2022. Effect of light duration on growth characteristics of flowering Chinese cabbage[J]. China Seed Industry,(9):89-92.] doi:10.19462/j.cnki.1671 895x.2022.09.042.

    Anders S,Huber W G. 2010. Differential expression analysis for sequence count data[J]. Genome Biology,11(10):R106. doi: 10.1186/gb-2010-11-10-r106.

    Ashburner M,Ball C A,Blake J A,Botstein D,Butler H, Cherry J M,Davis A P,Dolinski K,Dwight S S,Eppig J T,Harris M A,Hill D P,Issel-Tarver I,Kasarskis A,Lewis S,Matese J C,Richardson J E,Ringwald M,Rubin G M, Sherlock G. 2000. Gene ontology:Tool for the unification of biology[J]. Nature Genetics,25(1):25-29. doi: 10.1038/75556.

    Blazquez M A,Weigel D. 2000. Integration of floral inductive signals in Arabidopsis[J]. Nature,404(6780):889-892. doi: 10.1038/35009125.

    Bouché F,Lobet G,Tocquin P,Périlleux C. 2016. FLOR-ID:An interactive database of flowering-time gene networks in Arabidopsis thaliana[J]. Nucleic Acids Research,44(D1):1167-1171. doi: 10.1093/nar/gkv1054.

    Chen S F,Zhou Y Q,Chen Y R,Gu J. 2018. fastp:An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,34(17):i884-i890. doi: 10.1093/bioinformatics/bty560.

    Huang X M,Lei Y L,Guan H L,Hao Y W,Liu H C,Sun G W, Chen R Y,Song S W. 2017. Transcriptomic analysis of the regulation of stalk development in flowering Chinese cabbage(Brassica campestris) by RNA sequencing[J]. Scientific Reports,7(1):15517. doi: 10.1038/s41598-017-15699-6.

    Imaizumi T,Kay S A. 2006. Photoperiodic control of flowering:Not only by coincidence[J]. Trends in Plant Science, 11(11):550-558. doi: 10.1016/j.tplants.2006.09.004.

    Rieu I, Eriksson S, Powers S J, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas S G, Hedden P, Phillips A L 2008. Genetic analysis reveals that C19-GA 2-Oxidation is a major gibberellin inactivation pathway in Arabidopsis[J]. The Plant Cell,20(9):2420-2436. doi: 10.1105/tpc.108.058818.

    Jung C,Muller A E. 2009. Flowering time control and applications in plant breeding[J]. Trends in Plant Science,14(10):563-573. doi: 10.1016/j.tplants.2009.07.005.

    Kanehisa M,Goto S. 2000. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic acids research,28(1):27 30. doi: 10.1093/nar/28.1.27.

    Kania T,Russenberger D,Peng S,Apel K,Melzer S. 1997. FPF1 promotes flowering in Arabidopsis[J]. Plant Cell,9(8):1327-1338. doi: 10.1105/tpc.9.8.1327.

    Lee J,Lee I. 2010. Regulation and function of SOC1,a flowering pathway integrator[J]. Journal of Experimental Botany, 61(9):2247-2254. doi: 10.1093/jxb/erq098.

    Liu W,Liu Y,Kleiber T. 2021. A review of progress in current research on Chinese flowering cabbage(Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee)[J]. Journal of Elementology,26(1):149-162. doi:10.5601/jelem. 2020. 25.4.2076.

    Luo M,Tai R,Yu C W,Yang S G,Chen C Y,Lin W D, Schmidt W,Wu K Q. 2015. Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis[J]. The Plant Journal,82(6):925-936. doi: 10.1111/tpj.12868.

    Mandel M A,Yanofsky M F. 1995. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1[J]. The Plant Cell,7(11):1763-1771. doi: 10.1105/tpc.7.11.1763.

    Michaels S D,Amasino R M. 2001. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization[J]. Plant Cell,13(4):935 941. doi: 10.1105/tpc.13.4.935.

    Mortazavi A,Williams B A,McCue K,Schaefer L,Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods,5(7):621-628. doi: 10.1038/nmeth.1226.

    Teotia S, Lamb R S. 2009. The paralogous genes RADICALINDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development[J]. Plant Physiology,151(1):180-198. doi: 10.1104/pp.109.142786.

    Schönrock N,Bouveret R,Leroy O,Borghi L,Köhler,C,Gruissem W,Henning L. 2006. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway[J]. Genes Development,20(12):1667-1678. doi: 10.1101/gad.377206.

    Song S W,Lei Y L,Huang X M,Su W,Chen R Y,Hao Y W. 2019. Crosstalk of cold and gibberellin effects on bolting and flowering in flowering Chinese cabbage[J]. Journal of Integrative Agriculture,18(5):992-1000. doi: 10.1016/S2095-3119(18)62063-5.

    Srikanth A,Schmid M. 2011. Regulation of flowering time:All roads lead to Rome[J]. Cell Molecular Life Science,68(12):2013-2037. doi: 10.1007/s00018-011-0673-y.

    Suarez-Lopez P,Wheatley K,Robson F,Onouchi H,Valverde F,Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature,410(6832):1116-1120. doi: 10.1038/35074138.

    Xiao X F,Wu C J,Xu Z Y,Yang Y G,Fan S Y,Wang F. 2015. Molecular cloning,characterization and expression analysis of bolting-associated genes in flowering Chinese cabbage[J]. Genes Genomics,37(4):357-363. doi: 10.1007/s13258-014-0264-z.

    Yanovsky M J,Kay S A. 2001. Signaling networks in the plant circadian system[J]. Current Opinion in Plant Biology,4(5):429-435. doi: 10.1016/S1369-5266(00)00196-5.

    Yoo S K,Wu X l,Lee J S,Ahn J H. 2011. AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis[J]. The Plant Journal,65(1):62-76. doi: 10.1111/j.1365-313X.2010.04402.x.

    Young M D,Wakefield M J,Smyth G K,Oshalack A. 2010. Gene ontology analysis for RNA-Seq:Accounting for selection bias[J]. Genome Biology,11(2):R14. doi: 10.1186/gb-2010-11-2-r14.

    Yu G C,Wang L G,Han Y Y,He Q Y. 2012. clusterProfiler:An R package for comparing biological themes among gene clusters[J]. OMICS-A Journal of Integrative Biology,16(5):284-287. doi: 10.1089/omi.2011.0118.

计量
  • 文章访问数:  111
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 网络出版日期:  2024-06-25

目录

    /

    返回文章
    返回