基于转录组测序的关岭牛肌肉生长发育关键基因筛选与鉴定

周迪, 赵忠海, 王府, 杨蓉, 王燕, 敖叶, 谢玲玲, 陈秋生, 田兴舟, 李波

周迪, 赵忠海, 王府, 杨蓉, 王燕, 敖叶, 谢玲玲, 陈秋生, 田兴舟, 李波. 2024: 基于转录组测序的关岭牛肌肉生长发育关键基因筛选与鉴定. 南方农业学报, 55(3): 611-622. DOI: 10.3969/j.issn.2095-1191.2024.03.003
引用本文: 周迪, 赵忠海, 王府, 杨蓉, 王燕, 敖叶, 谢玲玲, 陈秋生, 田兴舟, 李波. 2024: 基于转录组测序的关岭牛肌肉生长发育关键基因筛选与鉴定. 南方农业学报, 55(3): 611-622. DOI: 10.3969/j.issn.2095-1191.2024.03.003
ZHOU Di, ZHAO Zhong-hai, WANG Fu, YANG Rong, WANG Yan, AO Ye, XIE Ling-ling, CHEN Qiu-sheng, TIAN Xing-zhou, LI Bo. 2024: Screening and validation of the key genes for muscle growth and development in Guanling cattle based on transcriptome sequencing. Journal of Southern Agriculture, 55(3): 611-622. DOI: 10.3969/j.issn.2095-1191.2024.03.003
Citation: ZHOU Di, ZHAO Zhong-hai, WANG Fu, YANG Rong, WANG Yan, AO Ye, XIE Ling-ling, CHEN Qiu-sheng, TIAN Xing-zhou, LI Bo. 2024: Screening and validation of the key genes for muscle growth and development in Guanling cattle based on transcriptome sequencing. Journal of Southern Agriculture, 55(3): 611-622. DOI: 10.3969/j.issn.2095-1191.2024.03.003

基于转录组测序的关岭牛肌肉生长发育关键基因筛选与鉴定

基金项目: 

贵州省高层次创新型人才培育项目(黔科合平台人才-GCC[2023]028)

贵州省农业生产发展项目(黔农牧[2024]010号)

详细信息
    作者简介:

    周迪(1992-),https://orcid.org/0000-0001-9720-2626,博士,正高级畜牧师,主要从事动物遗传育种与种质资源创新研究工作,E-mail:dizhougz@163.com

    通讯作者:

    李波(1973-),https://orcid.org/0009-0002-1193-1524,正高级畜牧师,主要从事动物遗传育种与繁殖研究工作,E-mail:libo808048@163.com

  • 中图分类号: S823.81

Screening and validation of the key genes for muscle growth and development in Guanling cattle based on transcriptome sequencing

Funds: 

Guizhou High Level Innovation Talents Cultivation Project (QKHPTRC-GCC[2023]028)

Guizhou Agricultural Production and Development Project(Qiannongmu[2024]010)

  • 摘要: 【目的】基于转录组测序挖掘出贵州关岭牛肌肉生长发育关键基因,为后续培育贵州优质肉牛品种提供理论依据。【方法】选取3头健康且体重相近的24月龄成年关岭牛,屠宰后采集其心脏、肝脏、脾脏、肺脏、肾脏、背最长肌、大腿肌及肩峰等组织样品,采用TRIzol法提取各组织总RNA,构建cDNA文库后进行转录组测序,通过生物信息学手段筛选出不同样品间的差异表达基因(DEGs),结合GO功能注释分析和KEGG信号通路富集分析挖掘出关岭牛肌肉生长发育相关候选基因,再经实时荧光定量PCR对候选基因进行验证。【结果】测序样品有效序列(Clean reads)比对至参考基因组序列的平均比对率为90.76%,检测到26367个新转录本(有编码潜能的转录本19659个,非编码转录本6708个);在各组织中检测到共表达基因53912个,其中已知基因51688个、预测新基因2224个;GO功能注释分析发现这些共表达基因主要发挥生物调节、代谢过程、生物膜组成、催化活性和转录调节活性等功能。通过DEGseq检测,最终筛选获得16个与肌肉生长发育相关的DEGs(QKI、CHKB、MYBPC1、MBNL1、MYH11、MYLK2、TPM3、NEXN、EZH2、TNNT3、PPARGC1A、SGCA、DMPK、FOXP1、FLNBTNS2),主要参与内吞作用、心肌收缩、癌症、代谢及MAPK信号通路。实时荧光定量PCR验证结果显示,筛选出的16个DEGs在关岭牛背最长肌或肩峰中高表达,与转录组测序结果一致。【结论】基于转录组测序从关岭牛各组织中筛选出16个与肌肉生长发育相关的DEGs,主要在生物调节、代谢过程、细胞成分、催化和转录调节等方面发挥功能作用,可作为开展关岭牛肌肉生长发育遗传机制研究的候选基因。
    Abstract: 【Objective】The purpose of the study was to excavate the key genes related to muscle growth and development of Guizhou Guanling cattle based on transcriptome sequencing, so as to provide a theoretical basis for the subsequent breeding of high-quality Guizhou beef cattle breeds. 【Method】Three healthy 24-month-old adult Guanling cattle with similar body weight were selected, and their heart, liver, spleen, lung, kidney, longissimus dorsi muscle, thigh muscle and acromion tissues were collected after slaughter. TRIzol method was used to extract total RNA from each tissue, and transcriptome sequencing was performed after constructing cDNA library. The differentially expressed genes (DEGs) among different samples were screened by bioinformatics, and candidate genes related to muscle growth and development of Guanling cattle were extracted by combining GO functional annotation analysis and KEGG signaling pathway enrichment analysis, and then the candidate genes were verified by real-time fluorescence quantitative PCR. 【Result】 The average mapped rate of clean reads to the reference genome sequence of the sequenced samples was 90.76%, and 26367 new transcripts (19659 with coding potential and 6708 with non-coding transcripts) were detected. A total of 53912 co-expressed genes were detected in each tissue, including 51688 known genes and 2224 predicted new genes. GO functional annotation analysis showed that these co-expressed genes mainly played the functions of biological regulation, metabolic process, membrane part, catalytic activity and transcriptional regulation activity. Through the DEGseq test, 16 DEGs related to muscle development were finally screened and obtained (QKI, CHKB, MYBPC1, MBNL1, MYH11, MYLK2, TPM3, NEXN, EZH2, TNNT3, PPARGC1A, SGCA, DMPK, FOXP1, FLNB and TNS2). They were mainly involved in endocytosis, myocardial contraction, cancer, metabolism and MAPK signaling pathway. The results of realtime fluorescence quantitative PCR showed that all the 16 selected DEGs were highly expressed in longissimus dorsi muscle and acromion of Guanling cattle, which was consistent with transcriptome sequencing results. 【Conclusion】Sixteen DEGs related to muscle development are selected from various tissues of Guanling cattle based on transcriptome sequencing, which mainly play functions in biological regulation, metabolic process, cell components, catalysis and transcriptional regulation, and can be used as candidate genes for conducting the study of genetic mechanism of muscle growth and development of Guanling cattle.
  • 陈浩,王纯洁,斯木吉德,敖日格乐. 2021. 牛肉品质及其影响因素研究进展[J]. 动物营养学报,33(2):669-678.[Chen H,Wang C J,Smujid,Aogegle. 2021. Research progress on beef quality and its influencing factors[J]. Chinese Journal of Animal Nutrition,33(2):669-678.] doi: 10.3969/j.issn.1006-267x.2021.02.008.
    管鹏宇,张爱忠,姜宁. 2019. 牛肉品质影响因素的研究进展[J]. 黑龙江畜牧兽医,(11):39-43.[Guan P Y,Zhang A Z,Jiang N. 2019. Research progress on factors influencing beef quality[J]. Heilongjiang Animal Science and Veterinary Medicine,(11):39-43.] doi:10.13881/j.cnki.hljxmsy. 2018.08.0134.
    刘娟,王舒,左周,路畅,杨阳,蔡春波,赵燕,郭晓红,曹果清, 李步高,高鹏飞. 2021. 结合WGCNA鉴定与猪肌纤维和肌内脂肪相关的中枢基因[J]. 山西农业大学学报(自然科学版),41(4):109-118.[Liu J,Wang S,Zuo Z,Lu C, Yang Y,Cai C B,Zhao Y,Guo X H,Cao G Q,Li B G, Gao P F. 2021. Identification of hub genes associated with porcine fibers and intramuscular fat by WGCNA[J]. Journal of Shanxi Agricultural University (Natural Science Edition),41(4):109-118.] doi: 10.13842/j.cnki.issn16718151.202102023.
    莫兹源,谭昇,刘文友,李大刚,闵力,张志飞,王翀,童雄. 2023. 肌纤维类型影响牛肉品质相关指标的研究进展[J]. 中国畜禽种业,19(6):29-37.[Mo Z Y,Tan S,Liu W Y,Li D G,Min L,Zhang Z F,Wang C,Tong X. 2023. Research progress on the influence of muscle fiber types on beef quality indexes[J]. The Chinese Livestock and Poultry Breeding,19(6):29-37.] doi: 10.3969/j.issn.16734556.2023.06.007.
    石鹏飞,阮涌,刘文娇,许家利,孙金魁,熊讯,许厚强. 2022.
    关岭牛FABP3FABP4 基因的分子特征及其组织表达分析[J]. 南方农业学报,53(8):2281-2293.[Shi P F,Ruan Y,Liu W J,Xu J L,Sun J K,Xiong X,Xu H Q. 2022. Molecular characteristics of FABP3 and FABP4 genes and tissue expression analysis of Guanling cattle[J]. Journal of Southern Agriculture,53(8):2281-2293.] doi: 10.3969/j.issn.2095-1191.2022.08.021.
    石鹏飞,许家利,孙金魁,许厚强. 2023. 关岭牛FABP1FABP2 基因克隆及其组织表达分析[J]. 南方农业学报, 54(2):598-608.[Shi P F,Xu J L,Sun J K,Xu H Q. 2023. Cloning and tissue expression analysis of Guanling cattle FABP1 and FABP2 genes[J]. Journal of Southern Agriculture, 54(2):598-608.] doi: 10.3969/j.issn.2095-1191.2023.02.028.
    时伟红,李兆阳,杨葳,李翀,刘京津,郑志红. 2012. TNNT3 突变转基因小鼠筛选及肌钙蛋白表达的研究[J]. 现代肿瘤医学,20(2):254-256.[Shi W H,Li Z Y,Yang W,Li C,Liu J J,Zheng Z H. 2012. The screening to study of TNNT3 mutation transgenic mouse and the troponin TNNT3 (R69H) gene expression of fast skeletal muscle in TNNT3 mutation transgenic mouse[J]. Journal of Modern Oncology,20(2):254-256.] doi: 10.3969/j.issn.1672-4992.2012.02.11.
    孙金魁,许厚强,阮涌,宋林锦,许家利,陈晨,石鹏飞. 2022. 关岭牛MEF2AMEF2B基因克隆及其组织表达特征分析[J]. 南方农业学报,53(9):2643-2653.[Sun J K,Xu H Q,Ruan Y,Song L J,Xu J L,Chen C,Shi P F. 2022. Cloning and tissue expression analysis of MEF2A and MEF2B genes in Guanling cattle[J]. Journal of Southern Agriculture, 53(9):2643-2653.] doi: 10.3969/j.issn.2095-1191.2022.09.027.
    王丹丹,刘晓牧,张冉,刘桂芬,万发春,林浴霜. 2016. 鲁西黄牛MSTN基因上游序列多态性对转录表达的影响[J]. 中国畜牧兽医,43(7):1667-1673.[Wang D D,Liu X M, Zhang R,Liu G F,Wan F C,Lin Y S. 2016. Effect of MSTN gene upstream sequence polymorphism on transcriptional expression in Luxi Huang cattle[J]. China Animal Husbandry & Veterinary Medicine,43(7):1667-1673.] doi: 10.16431/j.cnki.1671-7236.2016.07.002.
    叶保国,张小辉,徐铁山. 2014. 北京鸭和淮南麻鸭胸肌发育过程TPM1TPM3 基因的表达变化研究[J]. 黑龙江畜牧兽医,(19):67-70.[Ye B G,Zhang X H,Xu T S. 2014. Study on the changes in the TPM1 and TPM3 gene expressions during the development of breast muscle in Peking duck and Huainan shelduck[J]. Heilongjiang Animal Science and Veterinary Medicine,(19):67-70.]

    Binas B,Han X X,Erol E,Luiken J J F P,Glatz J F C,Dyck D J,Motazavi R,Adihetty P J,Hood D A,Bonen A. 2003. A null mutation in H-FABP only partially inhibits skeletal muscle fatty acid metabolism[J]. American Journal of Physiology. Endocrinology and Metabolism,285(3):E481E489. doi: 10.1152/ajpendo.00060.2003.

    Campbell P J,Stephens P J,Pleasance E D,O'Meara S,Li H, Santarius T,Stebbings L A,Leroy C,Edkins S,Hardy C, Teague J W,Menzies A,Goodhead I,Turner D J,Clee C M,Quail M A,Cox A,Brown C,Durbin R,Hurles M E, Edwards P A W,Bignell G R,Stratton M R,Futreal P A. 2008. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel pairedend sequencing[J]. Nature Genetics,40:722-729.doi: 10.1038/ng.128.

    Caretti G,Di Padova M,Micales B,Lyons G E,Sartorelli V. 2004. The polycomb EZH2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation[J]. Genes & Development,18(21):2627-2638. doi: 10.1101/gad.1241904.

    Casas E,Keele J W,Shackelford S D,Koohmaraie M,Stone R T. 2004. Identification of quantitative trait loci for growth and carcass composition in cattle[J]. Animal Genetics,35(1):2-6. doi: 10.1046/j.1365-2052.2003.01067.x.

    Ceccobelli S,Perini F,Trombetta M F,Tavoletti S,Lasagna E, Pasquini M. 2022. Effect of myostatin gene mutation on slaughtering performance and meat quality in marchigiana bulls[J]. Animals,12(4):518. doi:10.3390/ani12040518. Cesario J M,Almaidhan A A,Jeong J. 2016. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development[J]. Gene Expression Patterns,20(2):111-119. doi:10.1016/j.gep.2016.03.001.

    Chen D,Li W F,Du M,Wu M,Cao B H. 2015. Sequencing and characterization of divergent marbling levels in the beef cattle (Longissimus dorsi Muscle) transcriptome[J]. Asian-Australasian Journal of Animal Sciences,28(2):158165. doi: 10.5713/ajas.14.0394.

    Fan H T,Cinar M U,Phatsara C,Tesfaye D,Tholen E,Looft C,Schellander K. 2011. Molecular mechanism underlying the differential MYF6 expression in postnatal skeletal muscle of Duroc and Pietrain breeds[J]. Gene,486(1-2):8-14. doi: 10.1016/j.gene.2011.06.031.

    Goszczynski D E,Mazzucco J P,Ripoli M V,Villarreal E L, Rogberg-Muñoz A,Mezzadra C A,Melucci L M,Giovambattista G. 2016. Genetic characterisation of PPARG, CEBPA and RXRA,and their influence on meat quality traits in cattle[J]. Journal of Animal Science and Technology, 58(1):14. doi: 10.1186/s40781-016-0095-3.

    Guo Y W,Wang J N,Zhu M F,Zeng R,Xu Z Y,Li G L, Zuo B. 2017. Identification of myod-responsive transcripts reveals a novel long non-coding RNA (lncrna-ak143003) that negatively regulates myoblast differentiation[J]. Scientific Reports,7(1):2828. doi: 10.1038/s41598-017-03071-7.

    Jauvin D,Chrétien J,Pandey S K,Martineau L,Revillod L, Bassez G,Lachon A,MacLeod A R,Gourdon G,Wheeler T M,Thornton C A,Bennett C F,Puymirat J. 2017. Targeting DMPK with antisense oligonucleotide improves muscle strength in myotonic dystrophy type 1 mice[J]. Molecular Therapy,7:465-474. doi: 10.1016/j.omtn.2017.05.007.

    Kanadia R N,Urbinati C R,Crusselle V J,Luo D F,Lee Y J, Harrison J K,Oh S P,Swanson M S. 2003. Developmental expression of mouse muscleblind genes Mbnl1,Mbnl2 and Mbnl3[J]. Gene Expression Patterns,3(4):459-462. doi: 10.1016/S1567-133X(03)00064-4.

    Kim D,Langmead B,Salzberg S L. 2015. HISAT:A fast spliced aligner with low memory requirements[J]. Nature Methods,12(4):357-360. doi: 10.1038/nmeth.3317.

    Kong L,Zhang Y,Ye Z Q,Liu X Q,Zhao S Q,Wei L P,Gao G. 2007. CPC:Assess the protein-coding potential of transcripts using sequence features and support vector machine[J]. Nucleic Acids Research,35(S2):W345-W349. doi: 10.1093/nar/gkm391.

    Kong Y Y,Yuan Z H,Liu X,Li F D,Yue X P. 2022. A novel snp within LIPE gene is highly associated with sheep intramuscular fat content[J]. Small Ruminant Research,209:106658. doi: 10.1016/j.smallrumres.2022.106658.

    Kuang S Q,Kwartler C S,Byanova K L,Pham J,Gong L M, Prakash S K,Huang J,Kamm K E,Stull J T,Sweeney H L,Milewicz D M. 2012. Rare,nonsynonymous variant in the smooth muscle-specific isoform of myosin heavy chain,MYH11,R247C,alters force generation in the aorta and phenotype of smooth muscle cells[J]. Circulation Research, 110(11):1411-1422. doi: 10.1161/CIRCRESAHA.111.261743.

    Lee J S,Kim J M,Hong J S,Lim K S,Hong K C,Lee Y S. 2012. Effects of polymorphisms in the 3' untranslated region of the porcine PPARGC1A gene on muscle fiber characteristics and meat quality traits[J]. Molecular Biology Reports,39(4):3943-3950. doi: 10.1007/s11033-0111173-8.

    Li B J,Qiao L Y,An L X,Wang W W,Liu J H,Ren Y S,Pan Y Y,Jing J J,Liu W Z. 2018. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition[J]. BMC Genomics,19(1):338. doi: 10.1186/s12864-018-4747-1.

    Li B,Dewey C N. 2011. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,12(1):323. doi: 10.1186/1471-2105-12-323.

    Li Z H,Takakura N,Oike Y,Imanaka T,Araki K,Suda T, Kaname T,Kondo T,Abe K,Yamamura K I. 2003. Defective smooth muscle development in qkI-deficient mice[J]. Development,Growth & Differentiation,45(5-6):449-462. doi: 10.1111/j.1440-169X.2003.00712.x.

    Listrat A,Gagaoua M,Picard B. 2019. Study of the chronology of expression of ten extracellular matrix molecules during the myogenesis in cattle to better understand sensory properties of meat[J]. Foods,8(3):97. doi: 10.3390/foods8030097.

    McKenna A,Hanna M,Banks E,Sivachenko A,Cibulskis K, Kernytsky A,Garimella K,Altshuler D,Gabriel S,Daly M,DePristo M A. 2010. The genome analysis toolkit:A mapreduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research,20(9):1297-1303. doi: 10.1101/gr.107524.110.

    Nechtelberger D,Pires V,Söolknet J,Stur I,Brem G,Mueller M,Mueller S. 2001. Intramuscular fat content and genetic variants at fatty acid-binding protein loci in Austrian pigs[J]. Journal of Animal Science,79(11):2798-2804.

    Oh D Y,Lee Y S,La B M,Yeo J S. 2012. Identification of the SNP (single nucleotide polymorphism) for fatty acid composition associated with beef flavor-related FABP4 (fatty acid binding protein 4) in Korean cattle[J]. Asian-Australasian Journal of Animal Sciences,25(7):913-921. doi: 10.5713/ajas.2012.12078.

    Pertea M,Pertea G M,Antonescu C M,Chang T C,Mendell J T,Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads[J]. Nature Biotechnology,33(3):290-295. doi: 10.1038/nbt.3122.

    Quijano-Roy S,Avila-Smirnow D,Carlier R Y. 2012. Whole body muscle MRI protocol:Pattern recognition in early onset NM disorders[J]. Neuromuscular Disorders,22(S2):S68-S84. doi:10.1016/j.nmd.2012.08.003. Robakowska-Hyżorek D,Oprzadek J,Żelazowska B,Olbromski R,Zwierzchowski L. 2010. Effect of the g. -723G→T polymorphism in the bovine myogenic factor 5(Myf5) gene promoter region on gene transcript level in the Longissimus dorsi muscle and on meat traits of Polish HolsteinFriesian cattle[J]. Biochemical Genetics,48(5):450-464. doi:10.1007/s10528-009-9328-1.

    Shan T Z,Liu J Q,Xu Z Y,Wang Y Z. 2019. Roles of phosphatase and tensin homolog in skeletal muscle[J]. Journal of Cellular Physiology,234(4):3192-3196. doi: 10.1002/jcp.26820.

    Shen S H,Park J W,Lu Z X,Lin L,Henry M D,Wu Y N,Zhou Q,Xing Y. 2014. rMATS:Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data[J]. Proceedings of the National Academy of Sciences of the United States of America,111(51):E5593-E5601. doi: 10.1073/pnas.1419161111.

    Tong B,Muramatsu Y,Ohta T,Kose H,Yamashiro H,Sugiyama T,Yamada T. 2015. Association of the expression level of the MYBPC1 gene in skeletal muscle with marbling trait in Japanese black beef cattle[J]. Annals of Animal Science,15(2):349-361. doi: 10.1515/aoas-2015-0014.

    Turner D C,Seaborne R A,Sharples A P. 2019. Comparative transcriptome and methylome analysis in human skeletal muscle anabolism,hypertrophy and epigenetic memory[J]. Scientific Reports,9(1):4251. doi: 10.1038/s41598019-40787-0.

    Wang Y,Chen H W,Han D G,Chen Y,Muhatai G,Kurban T, Xing J M,He J Z. 2017. Correlation of the A-FABP gene polymorphism and mRNA expression with intramuscular fat content in Three-Yellow chicken and Hetian-Black chicken[J]. Animal Biotechnology,28(1):37-43. doi:10. 1080/10495398.2016.1194288.

    Wegner J,Albrecht E,Fiedler I,Teuscher F,Papstein H J, Ender K. 2006. Growth- and breed-related changes of muscle fiber characteristics in cattle[J]. Journal of Animal Science,78(6):1485-1496. doi: 10.2527/2000.7861485x.

    Wu G S,Sher R B,Cox G A,Vance D E. 2009. Understanding the muscular dystrophy caused by deletion of choline kinase beta in mice[J]. Biochimica et Biophysica Acta.

    Molecular and Cell Biology of Lipids,1791(5):347-356. doi: 10.1016/j.bbalip.2009.02.006.

    Wu S Y,Tong X L,Peng C X,Xiong G,,Lu K P,Hu H,Tan D,Li C L,Han M J,Lu C,Dai F Y. 2016. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori[J].Scientific Reports,6(1):26114. doi: 10.1038/srep26114.

    Wu T,Zhang Z H,Yuan Z Q,Lo L J,Chen J,Wang Y Z,Peng J R,Wang H M. 2013. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the Iongissimus dorsi muscles in Jinhua and Landrace pigs[J]. PLoS One,8(1):e53181. doi: 10.1371/journal.pone.0053181.

    Yu T Y,Tian X K,Li D,He Y L,Yang P Y,Cheng Y,Zhao X, Sun J C,Yang G S. 2023. Transcriptome,proteome and metabolome analysis provide insights on fat deposition and meat quality in pig[J]. Food Research International, 166:112550. doi: 10.1016/j.foodres.2023.112550.

    Zhi G,Ryder J W,Huang J,Ding P G,Chen Y,Zhao Y M, Kamm K E,Stull J T. 2005. Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction[J]. Proceedings of the National Academy of Sciences of the United States of America,102(48):17519-17524. doi:10.1073/pnas.0506 846102.

    Zhu B Y,Rippe C,Holmberg J,Zeng S H,Perisic L,Albinsson S,Hedin U,Uvelius B,Swärd K. 2018. Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP[J]. Scientific Reports,8(1):13025. doi:10.1038/s41598-018-313 28-2.

计量
  • 文章访问数:  523
  • HTML全文浏览量:  2
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-16
  • 网络出版日期:  2024-06-25

目录

    /

    返回文章
    返回