番石榴抗坏血酸合成酶基因在果实发育过程中表达特性分析

萧允艺, 赵晓梦, 刘金丰, 于泽浩, 刘杰凤, 林丽静

萧允艺, 赵晓梦, 刘金丰, 于泽浩, 刘杰凤, 林丽静. 2024: 番石榴抗坏血酸合成酶基因在果实发育过程中表达特性分析. 南方农业学报, 55(2): 422-431. DOI: 10.3969/j.issn.2095-1191.2024.02.012
引用本文: 萧允艺, 赵晓梦, 刘金丰, 于泽浩, 刘杰凤, 林丽静. 2024: 番石榴抗坏血酸合成酶基因在果实发育过程中表达特性分析. 南方农业学报, 55(2): 422-431. DOI: 10.3969/j.issn.2095-1191.2024.02.012
XIAO Yun-yi, ZHAO Xiao-meng, LIU Jin-feng, YU Ze-hao, LIU Jie-feng, LIN Li-jing. 2024: Expression characteristics of ascorbic acid synthase gene in guava fruit during fruit development. Journal of Southern Agriculture, 55(2): 422-431. DOI: 10.3969/j.issn.2095-1191.2024.02.012
Citation: XIAO Yun-yi, ZHAO Xiao-meng, LIU Jin-feng, YU Ze-hao, LIU Jie-feng, LIN Li-jing. 2024: Expression characteristics of ascorbic acid synthase gene in guava fruit during fruit development. Journal of Southern Agriculture, 55(2): 422-431. DOI: 10.3969/j.issn.2095-1191.2024.02.012

番石榴抗坏血酸合成酶基因在果实发育过程中表达特性分析

基金项目: 

国家自然科学基金项目(31901733)

广东省普通高校重点领域专项(2020ZDZX1056)

广东省普通高校特色创新类项目(2023KTSCX090)

海南省果蔬贮藏与加工重点实验室开放课题项目(HNGS202201)

详细信息
    作者简介:

    萧允艺(1987-),https://orcid.org/0000-0001-7944-1922,博士,主要从事果蔬品质形成及分子调控机理研究工作,E-mail:xyunyi@126.com

    通讯作者:

    林丽静(1978-),https://orcid.org/0000-0003-2960-5778,研究员,主要从事农产品品质及分子调控机理研究工作,E-mail:49031788@qq.com

  • 中图分类号: S667.903.6

Expression characteristics of ascorbic acid synthase gene in guava fruit during fruit development

Funds: 

National Natural Science Foundation of China (31901733)

Guangdong Universities Key Areas Special Project(2020ZDZX1056)

Guangdong Universities Characteristic Innovation Project(2023KTSCX090)

Open Project of Hainan Key Laboratory of Fruit and Vegetable Storage and Processing(HNGS202201)

  • 摘要: 【目的】测定番石榴果实发育过程中的抗坏血酸含量,并分析番石榴抗坏血酸合成酶基因的表达特性,为后续深入挖掘果实抗坏血酸合成调控机理及选育优质番石榴品种提供理论参考。【方法】以番石榴品种珍珠果实为研究对象,测定不同果实发育(花后10~130 d)过程中果肉(鲜重)中抗坏血酸含量及单果抗坏血酸总量,并从番石榴基因组数据中挖掘其抗坏血酸合成途径酶基因,通过实时荧光定量PCR检测其在果实发育过程中的表达特性。【结果】珍珠番石榴品种果实发育成熟周期为130 d,生长速率出现2个高峰期,分别出现在幼果膨大期和大果膨大期,果实果皮颜色从深绿色向浅绿转变,在花后110 d果皮颜色转变最明显。番石榴果肉抗坏血酸含量在果实发育成熟前期(花后10~40d)保持在较高水平,特别是在花后30d,果肉抗坏血酸含量达132mg/100g,在花后40~100d抗坏血酸含量稍微下降但较稳定,保持在102.73 mg/100 g以上,成熟后期随果实迅速膨大而抗坏血酸含量略有下降,为84.39 mg/100 g,但单果抗坏血酸总量持续上升。从番石榴基因组数据共鉴定获得13个基因编码果实抗坏血酸合成途径相关酶的基因,这些基因编码完整L-半乳糖途径的相关酶,其中有6个基因集中于3号染色体,推测3号染色体是番石榴果实维生素合成的关键染色体。实时荧光定量PCR检测结果显示,除磷酸甘露糖异构酶基因(PgPMI1)和甘露糖磷酸变位酶基因(PgPMM1)在果实发育成熟过程中表达不规律外,其余11个L-半乳糖途径相关酶基因均在果实发育中期上调表达,后期表达又下调。果实抗坏血酸含量与GDP-甘露糖焦磷酸化酶基因(PgGMP1)和GDP-甘露糖-3',5'-表型异构酶基因(gGME2)表达显著正相关(P<0.05)。【结论】番石榴果实抗坏血酸积累与其合成途径基因的完整性及表达水平密切相关,推测由9类酶组成的L-半乳糖途径存在复杂的分子调控网络,挖掘获得的13个L-半乳糖途径成员,可用于后续番石榴优良品种的选育及转录调控机理研究。
    Abstract: 【Objective】The content of ascorbic acid during the development of guava fruit was determined and the expression characteristics of ascorbic acid synthase gene in guava were analyzed, which provided theoretical reference for further exploring the regulation mechanism of fruit ascorbic acid synthesis and breeding guava varieties with high quality.【Method】The fruit of guava variety Pearl was used as the research object to determine the content of ascorbic acid in the flesh(fresh weight) and the total amount of ascorbic acid in single fruit during the development of different fruits(10-130 d after anthesis). The ascorbate synthesis pathway enzyme genes were obtained from the genomic data of guava, and their expression characteristics during the development of fruit were detected by real-time fluorescence quantitative PCR.【Result】The ripening period of Pearl guava variety was 130 d, and the growth rate showed two peaks, which appeared in the young fruit expansion stage and the large fruit expansion stage, respectively. The color of the fruit peel changed from dark green to light green, and the color change was the most obvious at 110 d after flowering. The content of ascorbic acid in guava flesh remained at a high level in the early stage of fruit development and ripening(10-40 d after flowering), especially at 30 d after flowering, the content of ascorbic acid in guava flesh reached 132 mg/100 g, and slightly decreased but remained stable at more than 102.73 mg/100 g at 40-100 d after flowering. The ascorbic acid content decreased slightly with the rapid expansion of fruit in the late ripening period, to 84.39 mg/100 g, but the total ascorbic acid content of single fruit continued to increase. A total of 13 genes encoding enzymes related to fruit ascorbate synthesis pathway were obtained from guava genome data, and these genes encoded complete L-galactose pathway related enzymes, among which 6 genes were concentrated in chromosome 3, suggesting that chromosome 3 was the key chromosome for vitamin synthesis in guava fruit. Real-time fluorescence quantitative PCR results showed that except for the irregular expression of phosphomannose isomerase gene(PgPMI1) and phosphomannomutase gene(PgPMM1) during fruit development and maturation, the expression of the other 11 L-galactose pathway related enzyme genes was up-regulated in the middle stage of fruit development, and down-regulated in the later stage. The content of ascorbic acid in fruit was significantly positively correlated with the expression of GDP-mannose pyrophosphorylase gene(PgGMP1) and GDP-mannose-3',5'-epimerase gene(PgGME2)(P<0.05). 【Conclusion】The accumulation of ascorbic acid in guava fruits is closely related to the integrity and expression level of the synthesis pathway genes. It is speculated that the L-galactose pathway composed of 9enzymes has a complex molecular regulatory network. The 13 members of L-galactose pathway obtained by mining can be used for subsequent breeding of excellent guava varieties and transcriptional regulation mechanism research.
  • 陈卫芳,袁伟玲,刘志雄,严承欢,陈磊夫,张文格. 2023. 植物抗坏血酸合成调控研究进展[J]. 植物生理学报,59(3): 481-489.[Chen W F,Yuan W L,Liu Z X,Yan C H,Chen L F,Zhang W G. 2023. Research progress on regulation of ascorbic acid synthesis in plant[J]. Plant Physiology Journal,59(3):481-489.]doi:10.13592/j.cnki.ppj.300120.
    宋国华,高继萍,王春芳,刘茂林,王裕. 2014. 相对定量2-△△Ct法分析 Caspase-3 和 Caspase-9 在氟诱导大鼠肾脏中的表达[J]. 毒理学杂志,28(4):274-278.[Song G H,Gao J P,Wang C F,Liu M L,Wang Y. 2014. Relative quantitative detection of Caspase-3 and Caspase-9 mRNA expression of kidney in rats induced with fluoride[J]. Journal of Toxicology,28(4):274-278.]doi:10.16421/j.cnki.1002-3127.2014.04.020.
    王壮壮,董邵云,周琪,苗晗,刘小萍,徐奎鹏,顾兴芳,张圣平 . 2023. 黄瓜果实维生素 C 合成关键基因克隆与分析[J]. 中国农业科学,56(3):508-521.[Wang Z Z,Dong S Y,Zhou Q,Miao H,Liu X P,Xu K P,Gu X F,Zhang S P. 2023. Cloning and analysis of key genes for vitamin C synthesis in cucumber fruit[J]. Scientia Agricultura Sinica,56(3):508-521.]doi:10.3864/j.issn.0578-1752.2023.03.009.
    张丽梅,张朝坤,陈洪彬,陈钟佃. 2019. 番石榴种质资源果实性状的聚类分析[J]. 中国南方果树,48(6):53-58.[Zhang L M,Zhang C K,Chen H B,Chen Z D. 2019. Cluster analysis of fruit traits of guava germplasm resources[J].South China Fruits,48(6):53-58.]doi:10.13938/j.issn. 1007-1431.20180586.

    Agius F,Gonzalez-Lamothe R,Caballero J L,Munoz-Blanco J,Botella M A,Valpuesta V. 2003. Engineering increased vitamin C levels in plants by overexpression of a Dgalacturonic acid reductase[J]. Nature Biotechnology,21(2):177-181. doi:10.1038/nbt777.

    Cai X F,Zhang C J,Shu W B,Ye Z B,Li H X,Zhang Y Y. 2016. The transcription factor SlD of 22 involved in ascorbate accumulation and salinity stress in tomato[J]. Biochemical and Biophysical Research Communications,474(4):736-741. doi:10.1016/j.bbrc.2016.04.148.

    Chao J T,Kong Y Z,Wang Q,Sun Y H,Gong D P,Lv J,Liu G S. 2015. MapGene2Chrom,a tool to draw gene physical map based on Perl and SVG languages[J]. Hereditas,37(1):91-97. doi:10.16288/j.yczz.2015.01.013.

    Chen C,Zhang M,Zhang M Y,Yang M M,Dai S S,Meng Q W,Lv W,Zhuang K Y. 2023. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening[J]. Plant Physiology,192(3):2067-2080. doi:10.1093/plphys/kiad151.

    Chen W F,Hu T X,Ye J,Wang B,Liu G Z,Wang Y,Yuan L,Li J M,Li F M,Ye Z B,Zhang Y Y. 2020. A CCAATbinding factor,SlNFYA10,negatively regulates ascorbate accumulation by modulating the D-mannose/L-galactose pathway in tomato[J]. Horticulture Research,7(1):200. doi: 10.1038/s41438-020-00418-6.

    Chiaiese P,Corrado G,Minutolo M,Barone A,Errico A. 2019.Transcriptional regulation of ascorbic acid during fruit ripening in pepper(Capsicum annuum)varieties with low and high antioxidants content [J]. Plants(Basel),8(7):206. doi: 10.3390/plants8070206.

    Conklin P L,DePaolo D,Wintle B,Schatz C,Buckenmeyer G. 2013. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase:Protein phosphatase involved in the regulation of the ascorbic acid pool in plants[J]. Journal of Experimental Botany,64(10):2793-2804. doi:10.1093/jxb/ert140.

    Conklin P L,Gatzek S,Wheeler G L,Dowdle J,Raymond M J,Rolinski S,Isupov M,Littlechild J A,Smirnoff N. 2006.Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase,a plant ascorbic acid biosynthetic enzyme[J]. Journal of Biological Chemistry,281(23):15662-15670. doi: 10.1074/jbc.M601409200.

    Conklin P L,Norris S R,Wheeler G L,Williams E H,Smirnoff N,Last R L. 1999. Genetic evidence for the role of GDPmannose in plant ascorbic acid(vitamin C)biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America,96(7):4198-4203. doi:10. 1073/pnas.96.7.4198.

    Deng H H,Xia H,Guo Y Q,Liu X L,Lin L J,Wang J,Xu K F,Lv X L,Hu R H,Liang D. 2022. Dynamic changes in ascorbic acid content during fruit development and ripening of Actinidia latifolia(an ascorbate-rich fruit crop)and the associated molecular mechanisms[J]. International Journal of Molecular Sciences,23(10):5808. doi:10.3390/ijms 23105808.

    Feng C,Feng C,Lin X G,Liu S H,Li Y Z,Kang M. 2021. A chromosome-level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava(Psidium guajava)[J]. Plant Biotechnology Journal,19(4): 717-730. doi:10.1111/pbi.13498.

    Gao Y S,Badejo A A,Shibata H,Sawa Y,Maruta T,Shigeoka S,Page M,Smirnoff N,Ishikawa T. 2011. Expression analysis of the VTC2 and VTC5 genes encoding GDP-Lgalactose phosphorylase,an enzyme involved in ascorbate biosynthesis,in Arabidopsis thaliana[J]. Bioscience Biotechnology and Biochemistry,75(9):1783-1788. doi:10. 1271/bbb.110320.

    Hu T X,Ye J,Tao P W,Li H X,Zhang J,Zhang Y,Ye Z. 2016.The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway[J]. Plant Journal,85(1):16-29. doi:10.1111/tpj.13085.

    Huang M,Xu Q,Deng X X. 2014. L-ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose(Rosa roxburghii Tratt)[J]. Journal of Plant Physiology,171(14):1205-1216. doi:10.1016/j.jplph.2014. 03.010.

    Ioannidi E,Kalamaki M S,Engineer C,Pateraki I,Alexandrou D,Mellidou I,Giovannonni J,Kanellis A K. 2009. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions[J]. Journal of Experimental Botany,60(2):663-678. doi:10.1093/jxb/ern322.

    Jiang M,Liu Y,Ren L,She X,Chen H Y. 2018. Light regulates ascorbic acid accumulation and ascorbic acid-related genes expression in the peel of eggplant[J]. South African Journal of Botany,114:20-28. doi:10.1016/j.sajb.2017.10.012.

    Kakan X,Yu Y W,Li S H,Li X Y,Huang R F,Wang J. 2021.Ascorbic acid modulation by ABI4 transcriptional repression of VTC2 in the salt tolerance of Arabidopsis[J]. BMC Plant Biology,21(1):112. doi:10.1186/s12870-021-028 82-1.

    Lemmens E,Alós E,Rymenants M,De Storme N,Keulemans W J. 2020. Dynamics of ascorbic acid content in apple(Malus×domestica)during fruit development and storage[J]. Plant Physiology and Biochemistry,151:47-59. doi: 10.1016/j.plaphy.2020.03.006.

    Liang D,Zhu T,Ni Z,Lin L,Tang Y,Wang Z,Wang X,Wang J,Lv X,Xia H. 2017. Ascorbic acid metabolism during sweet cherry(Prunus avium)fruit development[J]. PLoS One,12(2):e172818. doi:10.1371/journal.pone.0172818.

    Liao G L,Xu Q,Allan A C,Xu X B. 2023. L-ascorbic acid metabolism and regulation in fruit crops[J]. Plant Physiology,192(3):1684-1695. doi:10.1093/plphys/kiad241.

    Liu X,Wu R,Bulley S M,Zhong C,Li D. 2022. Kiwifruit MYBS1-like and GBF3 transcription factors influence Lascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3[J]. New Phytologist,234(5):1782-1800. doi:10.1111/nph.18097.

    Lorence A,Chevone B I,Mendes P,Nessler C L. 2004. Myoinositol oxygenase offers a possible entry point into plant ascorbate biosynthesis[J]. Plant Physiology,134(3):1200-1205. doi:10.1104/pp.103.033936.

    Léchaudel M,Darnaudery M,Joët T,Fournier P,Joas J. 2018.Genotypic and environmental effects on the level of ascorbic acid,phenolic compounds and related gene expression during pineapple fruit development and ripening[J]. Plant Physiology and Biochemistry,130:127-138. doi:10.1016/j.plaphy.2018.06.041.

    Maione-Silva L,de Castro E G,Nascimento T L,Cintra E R,Moreira L C,Cintra B A S,Valadares M C,Lima E M. 2019. Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation,retention and enhances collagen synthesis by fibroblasts[J]. Scientific Reports,9(1):522. doi:10.1038/s41598-018-36682-9.

    Mellidou I,Chagné D,Laing W A,Keulemans J,Davey M W. 2012. Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit[J]. Plant Physiology,160(3):1613-1629. doi:10.1104/pp.112.203786.

    Nishikimi M,Fukuyama R,Minoshima S,Shimizu N,Yagi K. 1994. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase,the enzyme for L-ascorbic acid biosynthesis missing in man[J]. Journal of Biological Chemistry,269(18):13685-13688. doi:10.1016/0009-3084(94)02321-2.

    Ntagkas N,Woltering E J,Marcelis L F M. 2018. Light regulates ascorbate in plants:An integrated view on physiology and biochemistry[J]. Environmental and Experimental Botany,147:271-280. doi:10.1016/j.envexpbot.2017.10.009.

    Radi A M,Mohammed E T,Abushouk A I,Aleya L,AbdelDaim M M. 2020. The effects of abamectin on oxidative stress and gene expression in rat liver and brain tissues:Modulation by sesame oil and ascorbic acid[J]. Science of the Total Environment,701:134882. doi:10.1016/j. scitotenv.2019.134882.

    Sulistio M,Chao C,Chen C,Wu C T. 2022. Nonclimacteric‘Jen-Ju Bar’guava ripening behavior is caused by Copia LTR retrotransposon insertion in the promoter region of PgACS1,a System-2 ACC synthase gene[J]. Postharvest Biology and Technology,193:112038. doi:10.1016/j.postharvbio.2022.112038.

    Sunnetci S E,Erbas O. 2020. The ameliorative effects of ascorbic acid on critical illness polyneuropathy in rodent sepsis model[J]. Journal of Pediatric Intensive Care,9(4):265-270. doi:10.1055/s-0040-1710587.

    Tsaniklidis G,Delis C,Nikoloudakis N,Katinakis P,Aivalakis G. 2014. Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits[J]. Plant Physiology and Biochemistry,84:149-157. doi:10.1016/j.plaphy.2014.09. 009.

    Vasques L I,Vendruscolo C W,Leonardi G R. 2023. Topical application of ascorbic acid and its derivatives:A review considering clinical trials[J]. Current Medicinal Chemistry,30(29):3272-3286. doi:10.2174/09298673296662210 03102238.

    Wan C Y,Wilkins T A. 1994. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton(Gossypium hirsutum L.)[J]. Analytical Biochemistry,223(1):7-12. doi:10.1006/abio.1994.1538.

    Wheeler G L,Jones M A,Smirnoff N. 1998. The biosynthetic pathway of vitamin C in higher plants[J]. Nature,393(6683):365-369. doi:10.1038/30728.

    Wolucka B A,van Montagu M. 2003. GDP-mannose 3',5'-epimerase forms GDP-L-gulose,a putative intermediate for the de novo biosynthesis of vitamin C in plants[J]. Journal of Biological Chemistry,278(48):47483-47490. doi:10.1074/jbc.M309135200.

    Xiang N,Hu J,Wen T,Brennan M A,Brennan C S,Guo X. 2020. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn(Zea mays L.)seedlings[J]. Journal of the Science of Food and Agriculture,100(4):1694-1701. doi:10.1002/jsfa.10184.

    Xing C,Liu Y,Zhao L,Zhang S,Huang X. 2019a. A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance[J]. Plant Cell and Environment, 42(3):832-845. doi:10.1111/pce.13387.

    Xing C,Liu Y,Zhao L,Zhang S,Huang X. 2019b. A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance[J]. Plant Cell and Environment, 42(3):832-845. doi:10.1111/pce.13387.

    Yan X,Zhang X,Lu M,He Y,An H. 2015. De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers[J]. Gene,561(1):54-62. doi:10.1016/j.gene.2015. 02.054.

    Ye J,Li W F,Ai G,Li C X,Liu G Z,Chen W F,Wang B,Wang W Q,Lu Y G,Zhang J H,Li H X,Ouyang B,Zhang H Y,Fei Z J,Giovannoni J J,Ye Z B,Zhang Y Y. 2019.

    Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato[J]. PLoS Genetics,15(5):e1008149.doi:10.1371/journal.pgen.1008149.

    Zhang J Y,Pan D L,Jia Z H,Wang T,Wang G,Guo Z R. 2018.Chlorophyll,carotenoid and vitamin C metabolism regulation in Actinidia chinensis‘Hongyang’outer pericarp during fruit development [J]. PLoS One,13(3):e194835. doi: 10.1371/journal.pone.0194835.

    Zhang W Y,Lorence A,Gruszewski H A,Chevone B I,Nessler C L. 2009. AMR1,an Arabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway[J]. Plant Physiology,150(2): 942-950. doi:10.1104/pp.109.138453.

    Zhang Z J,Wang J,Zhang R X,Huang R F. 2012. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis [J]. Plant Journal,71(2):273-287. doi:10.1111/j.1365-313X.2012.04996.x.

计量
  • 文章访问数:  45
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-04
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回