蜻蜓凤梨AfFT3基因克隆及功能鉴定

荆永琳, 王小冰, 李俊国, 陈浪欣, 杨庆全, 徐立

荆永琳, 王小冰, 李俊国, 陈浪欣, 杨庆全, 徐立. 2024: 蜻蜓凤梨AfFT3基因克隆及功能鉴定. 南方农业学报, 55(2): 411-421. DOI: 10.3969/j.issn.2095-1191.2024.02.011
引用本文: 荆永琳, 王小冰, 李俊国, 陈浪欣, 杨庆全, 徐立. 2024: 蜻蜓凤梨AfFT3基因克隆及功能鉴定. 南方农业学报, 55(2): 411-421. DOI: 10.3969/j.issn.2095-1191.2024.02.011
JING Yong-lin, WANG Xiao-bing, LI Jun-guo, CHEN Lang-xin, YANG Qing-quan, XU Li. 2024: Gene cloning and functional identification of AfFT3 gene in Aechmea fasciata(Lindl.) Baker. Journal of Southern Agriculture, 55(2): 411-421. DOI: 10.3969/j.issn.2095-1191.2024.02.011
Citation: JING Yong-lin, WANG Xiao-bing, LI Jun-guo, CHEN Lang-xin, YANG Qing-quan, XU Li. 2024: Gene cloning and functional identification of AfFT3 gene in Aechmea fasciata(Lindl.) Baker. Journal of Southern Agriculture, 55(2): 411-421. DOI: 10.3969/j.issn.2095-1191.2024.02.011

蜻蜓凤梨AfFT3基因克隆及功能鉴定

基金项目: 

国家自然科学基金项目(31372106)

海南省自然科学基金项目(809195749021)

详细信息
    作者简介:

    荆永琳(1992-),https://orcid.org/0000-0003-0181-7779,主要从事种质资源保存与分子生物学研究工作,E-mail:jingyonglinlc@163.com

    通讯作者:

    徐立(1975-),https://orcid.org/0000-0003-4930-7305,研究员,主要从事种质资源收集、保存与创新研究工作,E-mail:xllzy@263.net

  • 中图分类号: S668.303.6

Gene cloning and functional identification of AfFT3 gene in Aechmea fasciata(Lindl.) Baker

Funds: 

National Natural Science Foundation of China(31372106)

Hainan Natural Science Foundation(809195749021)

  • 摘要: 【目的】克隆蜻蜓凤梨成花素基因AfFT3,并鉴定其生物学功能,为深入解析凤梨科植物开花分子机制提供理论依据。【方法】克隆AfFT3基因,利用生物信息学软件进行序列分析,并通过实时荧光定量PCR探究其在低温(18℃)、常温(25℃)和高温(35℃)及外源乙烯处理下的表达情况,采用农杆菌浸花法将AfFT3基因转入拟南芥,观察转基因植株表型,通过异源表达预测其生物学功能。通过酵母单杂交试验初步鉴定其启动子与AfEIN3蛋白的互作关系。【结果】从蜻蜓凤梨中克隆获得AfFT3基因全长570 bp,编码区(CDS)序列为465 bp,编码154个氨基酸残基,蛋白分子量为17.3 kD,为稳定的亲水性蛋白,无跨膜螺旋区,含有PKC、PKA、cdc2、INSR和GSK3等多个蛋白激酶磷酸化位点。同源序列比对发现,AfFT3蛋白中有2个氨基酸残基138Trp和140Gln突变为138Met和140Glu。系统发育分析结果显示,该蛋白属于PEBP家族的FT-like蛋白亚家族,与TFL-like亚家族的亲缘关系较近。与对照(大棚正常条件下栽培植株)相比,高温和低温处理下AfFT3基因在蜻蜓凤梨中的相对表达量显著(P<0.05,下同)或极显著(P<0.01,下同)升高。在高温、常温和低温条件下,使用外源乙烯处理后,AfFT3基因在蜻蜓凤梨中的相对表达量均较对照显著或极显著升高,在常温处理下其相对表达量最高。共获得6个转基因拟南芥株系(L1~L6),其中转基因株系L3和L6较转空载体拟南芥和野生型拟南芥延迟抽薹8 d。通过分段扩增获得AfFT3基因启动子3段序列(AfFT3-P1、AfFT3-P2和AfFT3-P3),长度分别为390、1077和552 bp,通过酵母单杂试验推测启动子序列AfFT3-P1和AfFT3-P3可与AfEIN3蛋白发生互作。【结论】高温、低温胁迫和乙烯均不同程度诱导AfFT3基因的高效表达,但在高温和低温条件下乙烯对AfFT3基因的表达诱导效果较常温有所降低,其转基因株系延迟抽薹,说明AfFT3基因参与调控蜻蜓凤梨开花过程,且响应温度和乙烯信号。
    Abstract: 【Objective】The flowering-related gene AfFT3 in Aechmea fasciata (Lindl.) Baker was cloned and its biological function was identified,which provided a theoretical basis for further analysis of the molecular mechanism of flowering of Bromeliaceae plants.【Method】AfFT3 gene was cloned and its sequence was analyzed by bioinformatics software.The expression levels of AfFT3 at low temperature(18℃),normal temperature(25℃)and high temperature(35℃)and exogenous ethylene treatment were detected by realtime fluorescence quantitative PCR(qRT-PCR).AfFT3gene was transferred into Arabidopsis thaliana (L.) Heynh by Agrobacterium flower dipping.The phenotype of transgenic plants was observed,and its biological function was predicted by heterologous expression.The interaction between the promoter and AfEIN3 protein was preliminarily identified by yeast one-hybrid assay.【Result】The full length of AfFT3gene cloned from A.fasciata was 570 bp,and the coding sequence (CDS) was 465 bp,encoding 154 amino acid residues.AfFT3 protein had a molecular weight of 17.3 kD,was a stable hydrophilic protein without a transmembrane helical region and contained several phosphorylation sites of protein kinases including PKC,PKA,cdc2,INSR and GSK3.The homologous sequence alignment revealed that two amino acid residues of AfFT3 protein 138Trp and 140Gln mutated to138Met and 140Glu.Phylogenetic analysis indicated that AfFT3 protein belonged to the FT-like protein subfamily of the PEBP family,and was close to the TFL-like subfamily.Compared with the control (plants cultivated in normal conditions in greenhouse),the relative expression of AfFT3 gene in A.fasciata was increased significantly (P<0.05,the same below) or extremely significantly (P<0.01,the same below) under the treatment of high temperature and low temperature.Under the conditions of high temperature,normal temperature and low temperature,after exogenous ethylene treatment,the relative expression of AfFT3 gene in A.fasciata was increased significantly or extremely significantly compared with the control,with the highest relative expression at normal temperature.A total of six transgenic A.thaliana plants (L1 to L6) were obtained,in which the transgenic plants L(3 )and L6 were about 8 d delayed than the empty vector and wild-type A.thaliana.The AfFT3 gene promoter sequences (AfFT3-P1,AfFT3-P2 and AfFT3-P3) were obtained by segmented amplification with the lengths of 390,1077 and 552 bp respectively.The results of yeast one-hybrid experiment preliminarily suggested that promoter sequence AfFT3-P1 and AfFT3-P3 might interact with AfEIN3 protein.【Conclusion】The effective expression of AfFT3 gene is induced by high temperature,low temperature stress and ethylene in different degrees,but the induction effect of ethylene on the expression of AfFT3 gene under high temperature and low temperature conditions is lower than that of normal temperature.The genetically modified plants delay bolting,indicating that AfFT3 gene is involved in the regulation of flowering process of A.fasciata,and respond to temperature and ethylene signals.
  • 陈锡,赵德刚,陈莹,李小冬,吴佳海,王小利 . 2017. 高羊茅FaFT2基因克隆及表达分析[J]. 植物生理学报,53(8): 1523-1531.[Chen X,Zhao D G,Chen Y,Li X D,Wu J H,Wang X L. 2017. Cloning and expression analysis of FaFT2 gene in tall fescue[J]. Plant Physiology Journal,53(8):1523-1531.]doi:10.13592/j.cnki.ppj.2017.0223.
    丛汉卿,信彩云,张银东,李志英,徐立. 2013.‘阿蒂擎天’凤梨谷胱甘肽-S-转移酶基因的克隆与乙烯诱导表达特性的初步分析[J]. 分子植物育种,11(3):365-370.[Cong H Q,Xin C Y,Zhang Y D,Li Z Y,Xu L. 2013. Cloning of glutathione-s-transferase gene and primary expression analysis in Guzmania wittmackii‘Attila’induced by ethylene[J]. Molecular Plant Breeding,11(3):365-370.]doi: 10.3969/mpb.011.000365.
    姜琳,孙兴,罗可欣,郭志雄,陈桂信,佘文琴,潘东明,潘腾飞 . 2021. 多花水仙种球膨大期对乙烯的响应研究[J].核农学报,35(6):1300-1306.[Jiang L,Sun X,Luo K X,Guo Z X,Chen G X,She W Q,Pan D M,Pan T F. 2021.Response of Narcissus tazetta to ehtylene during bulb swelling phase[J]. Journal of Nuclear Agricultural Sciences,35(6):1300-1306.]doi:10.11869/j.issn.100-8551.2021. 06.1300.
    蒋甲福,杨一曼,王琦,陈素梅,陈发棣. 2021. 植物开花素FT 的功能及其表观调控机制的研究进展[J]. 南京农业大学学报,44(5):805-811.[Jiang J F,Yang Y M,Wang Q,Chen S M,Chen F D. 2021. Progress in mechanism of the function of florigen FT and its epigenetic regulation[J].Journal of Nanjing Agricultural University,44(5):805-811.]doi:10.7685/jnau.202012016.
    李文阳,马梦迪,郭红卫. 2013. 植物激素乙烯作用机制的最新进展[J]. 中国科学:生命科学,43(10):854-863.[Li W Y,Ma M D,Guo H W. 2013. Advances in the action of plant hormone ethylene[J]. Scientia Sinica(Vitae),43(10): 854-863.]doi:10.1360/052013-284.
    申艳红,姜涛,赵湾湾,阮蔚华,张寒,周斌,陈红梅,陈晓静. 2019. 乙烯处理水仙催多花技术和机理的研究[J]. 农业生物技术学报,27(6):1003-1015.[Shen Y H,Jiang T,Zhao W W,Ruan W H,Zhang H,Zhou B,Chen H M,Chen X J. 2019. Study on technology and mechanism of ethylene treatment promotes the formation of more flowers of Narcissus tazetta var. chinensis[J]. Journal of Agricultural Biotechnology,27(6):1003-1015.]doi:10.3969/j.issn.1674-7968. 2019.06.006.
    赵赫,陈受宜,张劲松. 2016. 乙烯信号转导与植物非生物胁迫反应调控研究进展[J]. 生物技术通报,32(10):1-10.[Zhao H,Chen S Y,Zhang J S. 2016. Ethylene signaling pathway in regulating plant response to abiotic stress[J].Biotechnology Bulletin,32(10):1-10.]doi:10.13560/j.cnki.biotech.bull.1985.2016.10.001.

    Abe M,Kobayashi Y,Yamamoto S,Daimon Y,Yamaguchi A,Ikeda Y,Ichinoki H,Notaguchi M,Goto K,Araki T. 2005.FD,a bZIP protein mediating signalsfrom the floral pathway integrator FT at the shoot apex[J]. Science,309(5737): 1052-1056. doi:10.1126/science.1115983.

    Abe M,Kosaka S,Shibuta M,Nagata K,Uemura T,Nakano A,Kaya H. 2019. Transient activity of the florigen complex during the floral transition in Arabidopsis thaliana[J]. Development,146(7):dev171504. doi:10.1242/dev.171504.

    Clough S J,Bent A F. 1998. Floral dip:A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal,16(6):735-743. doi:10. 1046/j.1365-313x.1998.00343.x.

    Coelho C P,Minow M A A,Chalfun-Júnior A,Colasanti J. 2014. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis[J].Frontiers in Plant Science,5:221. doi:10.3389/fpls.2014. 00221.

    Fan C M,Hu R B,Zhang X M,Wang X,Zhang W J,Zhang Q H,Ma J H,Fu Y F. 2014. Conserved CO-FT regulons contribute tothe photoperiod flowering control in soybean[J].BMC Plant Biology,14:9. doi:10.1186/1471-2229-14-9.

    Guo H W,Ecker J R. 2003. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor[J]. Cell,115(6):667-677. doi: 10.1016/s0092-8674(03)00969-3.

    Halliday K J,Salter M G,Thingnaes E,Whitelam G C. 2003.Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT [J]. The Plant Journal,33:875-885. doi:10.1046/j. 1365-313X.2003.01674.x.

    Harig L,Beinecke F A,Oltmanns J,Muth J,Müller O,Rüping B,Twyman R M,Fischer R,Prüfer D,Noll G A. 2012. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco[J]. Plant Journal,72(6):908-921. doi: 10.1111/j.1365-313X.2012.05125.x.

    Hemming M N,Walford S A,Fieg S,Dennis E S,Trevaskis B. 2012. Identification of high-temperature-responsive genes in cereals[J]. Plant Physiology,158(3):1439-1450. doi: 10.2307/41435338.

    Ho W W,Weigel D. 2014. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T[J]. The Plant Cell,26(3):552-564. doi:10.1105/tpc.113.115220.

    Hong Z,Lv S X,Shuang L ,Wu H,Xia Z. 2014. GmFT4,a homolog of FLOWERING LOCUS T,is positively regulated by E1 and functions as a flowering repressor in soybean[J]. PLoS One,9(2):e89030. doi:10.1371/journal.pone.0089030.

    Iqbal N,Khan N A,Ferrante A,Trivellini A,Francini A,Khan M I R. 2017. Ethylene role in plant growth,development and senescence:Interaction with other phytohormones[J].Frontiers in Plant Science,8:475. doi:10.3389/fpls.2017. 00475.

    Jagadish S V K,Bahuguna R N,Djanaguiraman M,Gamuyao R,Prasad P V V,Craufurd P Q. 2016. Implications of high temperature and elevated CO2 on flowering time in plants[J]. Frontiers in Plant Science,7:913. doi:10.3389/fpls. 2016.00913.

    Kinoshita A,Richter R. 2020. Genetic and molecular basis of floral induction in Arabidopsis thaliana[J]. Journal of Experimental Botany,71(9):2490-2504. doi:10.1093/jxb/eraa057.

    Kobayashi Y,Kaya H,Goto K,Iwabuchi M,Araki T. 1999. A pair of related genes with antagonistic roles in mediating flowering signals[J]. Science,286(5446):1960-1962. doi: 10.1126/science.286.5446.1960.

    Kralemann L E M,Scalone R,Andersson L,Hennig L. 2018.North European invasion by common ragweed is associated with early flowering and dominant changes in FT/TFL1 expression[J]. Journal of Experimental Botany,69(10):2647-2658. doi:10.1093/jxb/ery100.

    Leeggangers H A C F,Rosilio-Brami T,Bigas-Nadal J,Rubin N,van Dijk A D J,Nunez de Caceres Gonzalez F F N,Saadon-Shitrit S,Nijveen H,Hilhorst H W M,Immink R G H,Zaccai M. 2018. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control[J]. Plant and Cell Physiology,59(1):90-106.doi:10.1093/pcp/pcx164.

    Lei M,Li Z Y,Wang J B,Fu Y L,Ao M F,Xu L. 2016. AfAP2-1,an age-dependent gene of aechmea fasciata,responds to exogenous ethylene treatment[J]. International Journal of Molecular Sciences,17(3):303. doi:10.3390/ijms17030 303.

    Lei M,Li Z Y,Wang J B,Fu Y L,Xu L. 2019. Ectopic expression of the Aechmea fasciata APETALA2 gene AfAP2-2 reduces seed size and delays flowering in Arabidopsis[J].Plant Physiology and Biochemistry,139:642-650. doi:10. 1016/j.plaphy.2019.03.034.

    Li M Z,An F Y,Li W Y,Ma M D,Feng Y,Zhang X,Guo H W. 2016a. DELLA proteins interact with FLC to repress flowering transition[J]. Journal of Integrative Plant Biology,58(7):642-655. doi:10.1111/jipb.12451.

    Li Y H,Wu Q S,Huang X,Liu S H,Zhang H N,Zhang Z,Sun G M. 2016b. Molecular cloning and characterization of four genes encoding ethylene receptors associated with pineapple(Ananas comosus L.) flowering[J]. Frontiers Plant Science,7:710. doi:10.3389/fpls.2016.00710.

    Li Z Y,Wang J B,Zhang X B,Zhu G P,Fu Y L,Jing Y L,Huang B L,Wang X B,Meng C Y,Yang Q Q,Xu L. 2022.The genome of Aechmea fasciata provides insights into the evolution of tank epiphytic habits and ethylene-induced flowering[J]. Communications Biology,5(1):920. doi: 10.1038/s42003-022-03918-4.

    Livak K J,Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods,25(4):402-408. doi:10.1006/meth.2001.1262.

    Luo X,Chen T,Zeng X L,He D W,He Y H. 2019. Feedback regulation of FLC by FLOWERING LOCUS T and FD through a 5'FLC promoter region[J]. Molecular Plant,12(3):285-288. doi:10.1016/j.molp.2019.01.013.

    Müller M,Munné-Bosch S. 2015. Ethylene response factors:A key regulatory hub in hormone and stress signaling[J].Plant physiology,169(1):32-41. doi:10.1104/pp.15.00677.

    Nakamura S,Abe F,Kawahigashi H,Nakazono K,Tagiri A,Matsumoto T,Utsugi S,Ogawa T,Handa H,Ishida H,Mori M,Kawaura K,Ogihara Y,Miura H. 2011. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination[J]. The Plant Cell,23(9):3215-3229.doi:10.1105/tpc.111.088492.

    Peng F Y,Hu Z Q,Yang R C. 2016. Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants[J]. BMC Genomics, 17:573. doi:10.1186/s12864-016-2916-7.

    Schiessl S V,Huettel B,Kuehn D,Reinhardt R,Snowdon R J. 2017. Flowering time gene variation in Brassica species shows evolutionary principles[J]. Frontiers in Plant Science,8:1742. doi:10.3389/fpls.2017.01742.

    Shim J S,Jang G. 2020. Environmental signal-dependent regulation of flowering time in rice[J]. International Journal of Molecular Sciences,21(17):6155. doi:10.3390/ijms2117 6155.

    Sun J,Cao P P,Wang L J,Chen S M,Chen F D,Jiang J F. 2018. The loss of a single residue from CmFTL3 leads to the failure of florigen to flower[J]. Plant Science,276:99-104. doi:10.1016/j.plantsci.2018.08.005

    Taoka K,Ohki I,Tsuji H,Furuita K,Hayashi K,Yanase T,Yamaguchi M,Nakashima C,Purwestri Y A,Tamaki S,Ogaki Y,Shimada C,Nakagawa A,Kojima C,Shimamoto K. 2011. 14-3-3 proteins act as intracellular receptors forrice Hd3a florigen[J]. Nature,476:332-335. doi:10.1038/nature10272.

    Verhage L,Angenent G C,Immink R G H. 2014. Research on floral timing by ambient temperature comes into blossom[J]. Trends in Plant Science,19(9):583-591. doi:10.1016/j.tplants.2014.03.009.

    Wu L,Li F,Den Q H,Zhang S S,Zhou Q,Chen F,Liu B J,Bao M Z,Liu G F. 2019. Identification and characterization of the FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family in Petunia[J]. DNA and Cell Biology,38(9):4720-4734. doi:10.1089/dna.2019.4720.

    Xi W Y,Liu C,Hou X L,Yu H. 2010. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis[J].The Plant Cell,22(6):1733-1748. doi:10.1105/tpc.109. 073072.

    Yang F X,Zhu G F,Wei Y L,Gao J,Liang G,Peng L Y,Lu C Q,Jin J P. 2019. Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genes in regulating flowering of Cymbidium goeringii[J]. BMC Genomics,20(1):53. doi:10.1186/s12864-019-5425-7.

计量
  • 文章访问数:  50
  • HTML全文浏览量:  2
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回