不同饲养方式对南江黄羊肠道菌群结构及血清免疫指标的影响

张小明, 张婷婷, 张贞贞, 李菁菁, 赵旺生

张小明, 张婷婷, 张贞贞, 李菁菁, 赵旺生. 2024: 不同饲养方式对南江黄羊肠道菌群结构及血清免疫指标的影响. 南方农业学报, 55(2): 334-345. DOI: 10.3969/j.issn.2095-1191.2024.02.004
引用本文: 张小明, 张婷婷, 张贞贞, 李菁菁, 赵旺生. 2024: 不同饲养方式对南江黄羊肠道菌群结构及血清免疫指标的影响. 南方农业学报, 55(2): 334-345. DOI: 10.3969/j.issn.2095-1191.2024.02.004
ZHANG Xiao-ming, ZHANG Ting-ting, ZHANG Zhen-zhen, LI Jing-jing, ZHAO Wang-sheng. 2024: Effects of different feeding methods on the intestinal flora structure and serum immune indexes of Nanjiang yellow goat. Journal of Southern Agriculture, 55(2): 334-345. DOI: 10.3969/j.issn.2095-1191.2024.02.004
Citation: ZHANG Xiao-ming, ZHANG Ting-ting, ZHANG Zhen-zhen, LI Jing-jing, ZHAO Wang-sheng. 2024: Effects of different feeding methods on the intestinal flora structure and serum immune indexes of Nanjiang yellow goat. Journal of Southern Agriculture, 55(2): 334-345. DOI: 10.3969/j.issn.2095-1191.2024.02.004

不同饲养方式对南江黄羊肠道菌群结构及血清免疫指标的影响

基金项目: 

国家自然科学基金项目(32260824)

详细信息
    作者简介:

    张小明(1998-),https://orcid.org/0009-0004-7711-1267,研究方向为反刍动物遗传育种与繁殖,E-mail:zxm18981473583@163.com

    通讯作者:

    赵旺生(1983-),https://orcid.org/0000-0002-6339-329X,博士,副教授,主要从事反刍动物遗传育种与繁殖研究工作,E-mail:wangshengzhao01@163.com

  • 中图分类号: S827.4

Effects of different feeding methods on the intestinal flora structure and serum immune indexes of Nanjiang yellow goat

Funds: 

National Natural Science (32260824)

  • 摘要: 【目的】探究不同饲养方式对南江黄羊肠道菌群结构和血清免疫指标的影响,为开展南江黄羊集约化舍饲养殖提供参考依据。【方法】选取体重相近、健康状况良好的3月龄南江黄羊公羊32只,随机分为2组,每组16只,分别进行放牧饲养(FMGF)和圈舍饲养(SSGF),预饲期7 d,正饲期60 d。正饲期第60 d每组随机选取6只南江黄羊,无菌采集直肠粪便样品,通过Illumina HiSeq探析不同饲养方式下南江黄羊肠道菌群结构差异;同时采集颈静脉血样,通过ELISA检测血清免疫球蛋白(IgA、IgG和IgM)和血清免疫因子(IL-2、IL-4、IL-6和TNF-α)。【结果】FMGF组南江黄羊血清中的IgM含量显著高于SSGF组南江黄羊(P<0.05,下同),而TNF-α含量显著低于SSGF组南江黄羊。FMGF组南江黄羊肠道菌群的Chao1指数显著低于SSGF组南江黄羊。在门分类水平上,FMGF组和SSGF组的优势菌门均为厚壁菌门和拟杆菌门;髌骨细菌门和浮酶菌门在FMGF组的相对丰度极显著高于SSGF组(P<0.01,下同),弯曲菌门、梭杆菌门和纤维杆菌门则表现为FMGF组的相对丰度显著低于SSGF组。在属分类水平上,FMGF组和SSGF组的优势菌属分别是理研菌科_RC9_菌群和克里斯滕森菌科_R-7_菌群;FMGF组相对丰度极显著高于SSGF组的菌属有念珠菌属、丁酸弧菌属、厌氧支原体属及假丁酸弧菌属等;FMGF组相对丰度极显著低于SSGF组的菌群有大肠杆菌—志贺菌属、阿克曼西亚属及拟杆菌属等。IgM含量与乳杆菌属相对丰度呈极显著负相关,与奈瑟菌属和拟杆菌属的相对丰度呈显著负相关;TNF-α含量与单杆菌属和p-1088-a5_gut_group的相对丰度呈极显著负相关。【结论】与舍饲相比,放牧能促使南江黄羊血清中IgM含量升高及TNF-α含量降低,并显著提高肠道中疣微菌门和脱硫杆菌门等有益菌群丰度,同时抑制弯曲菌门和梭杆菌门等有害菌群繁殖。可见,放牧对南江黄羊的免疫性能和肠道有益菌群结构有明显的正向影响。
    Abstract: 【Objective】To explore the effects of different feeding methods on the intestinal microbiota structure and serum immune indexes of Nanjiang yellow goat,this study aimed to offer insights for the optimal management and breeding practices of Nanjiang yellow goat.【Method】Thirty-two 3-month-old Nanjiang yellow goat,matched in body weight and health status,were randomly divided into 2 groups of 16 goats in each group,and subjected to either free-range grazing(FMGF) or enclosure feeding (SSGF).A pre-feeding period of 7 d was followed by a 60-day normal feeding period.On the 60th d of the normal feeding period,6 Nanjiang yellow goat were randomly selected from each group,and rectal fecal samples were collected aseptically.Illumina HiSeq was used to analyze the variations in intestinal flora structure of Nanjiang yellow goat under different feeding methods.Blood samples were obtained from the jugular vein to detect serum immunoglobulins (IgA,IgG and IgM) and serum immune factors (IL-2,IL-4,IL-6 and TNF-α) using ELISA method.【Result】The IgM content in serum of FMGF group was significantly higher than that of the SSGF group (P<0.05,the same below),and the TNF-α content was significantly lower in SSGF group compared to the SSGF group.The Chao1 index of intestinal flora of Nanjiang yellow goat in FMGF group was significantly lower than that in SSGF group.At the phyla classification level,Firmicutes and Bacteroidota were identified as the dominant phylum in both the FMGF group and SSGF group.The relative abundances of Patescibacteria and Planctomycetota were extremely significantly higher in FMGF group compared to the SSGF group (P<0.01,the same below),whereas the relative abundances of Campylobacterota,Fusobacteriota and Fibrobacterota in FMGF group were significantly lower than those in SSGF group.At the level of genus classification,the dominant bacterial genera in FMGF group and SSGF group were Rikenellaceae_RC9_gut_group and the Christensenellaceae_R-7_group,respectively.The relative abundance of bacteria in FMGF group was found to be extremely significantly higher than that in the SSGF group,with genera such as Andidatus_Saccharimonas,Butyrivibrio,Anaeroplasma and Pseudobutyrivibrio.Conversely,the relative abundance of bacteria in the FMGF group was extremely significantly lower than that in the SSGF group,with genera such as Escherichia-Shigella,Akkermansia and Bacteroides.IgM content was extremely significantly negatively correlated with the relative abundance of Lactiplantibacillus,and was significantly negatively correlated with the relative abundance of Neisseria and Bacteroides.TNF-α content was extremely significantly negatively correlated with the relative abundance of Solobacterium and p-1088-a5_gut_group.【Conclusion】In comparison to house feeding,grazing can elevate IgM contents and reduce TNF-α contents in the serum of Nanjiang yellow goat.Additionally,grazing enhances the presence of beneficial bacteria,such as Errucmicrobiota and Desulfobacterota,in the intestinal tract,while simultaneously inhibiting the growth of harmful bacteria,such as Campylobacterota and Fusobacteriota.In conclusion,grazing has demonstrated substantial positive impacts on the immune function and intestinal beneficial microbiota composition of Nanjiang yellow goat.
  • 何佳桧,陈瑜,苗斌. 2022. 补饲、季节和年龄对南江黄羊繁殖成活率的影响[J]. 草学,(6):68-71.[He J H,Chen Y,Miao B. 2022. Effects of supplementary feeding,season and age on reproductive survival rate of Nanjiang yellow goat [J]. Journal of Grassland and Forage Science,(6):68-71.]doi:10.3969/j.issn.2096-3971.2022.06.009.
    何向东,张国俊,张敬,刘春梅,黄丽,谭玉祥,张蓉,周琴,蒋康 . 2023. 不同饲喂方式对南江黄羊育肥效果的影响[J]. 中国畜禽种业,19(2):171-172.[He X D,Zhang G J,Zhang J,Liu C M,Huang L,Tan Y X,Zhang R,Zhou Q,Jiang K. 2023. Effects of different feeding methods on fattening effect of Nanjiang yellow goat[J]. The Chinese Livestock and Poultry Breeding,19(2):171-172.]doi:10. 3969/j.issn.1673-4556.2023.02.046.
    贾立军,张树敏,柴方红,李娜,李兆华,李航,谢素珠. 2018.放养与圈养对松辽黑猪免疫球蛋白和细胞因子水平的影响[J]. 黑龙江畜牧兽医,(20):76-77.[Jia L J,Zhang S M,Chai F H,Li N,Li Z H,Li H,Xie S Z. 2018. Effects of stocking and captivity on immunoglobulin and cytokine levels in Songliao black pig[J]. Heilongjiang Animal Science and Veterinary Medicine,(20):76-77.]doi:10.13881/j.cnki.hljxmsy.2018.04.0301.
    李勤,刘建平,肖国强,李勇. 2011. 运动强度和运动量对血液免疫指标影响程度的比较研究[J]. 武汉体育学院学报, 45(11):97-100.[Li Q,Liu J P,Xiao G Q,Li Y. 2011. A comparative study of the influence on the immunocompetence index of organisms from exercise intensity and the amount of exercise[J]. Journal of Wuhan Institute of Physical Education,45(11):97-100.]doi:10.3969/j.issn.1000-520X.2011.11.018.
    马丽娜,高总元,高海慧,康晓冬,梁小军. 2022. 饲粮蛋白水平对哺乳期犊牛生长性能、血清生化、免疫与抗氧化指标的影响[J]. 饲料研究,45(13):12-15.[Ma L N,Gao Z Y,Gao H H,Kang X D,Liang X J. 2022. Effects of dietary protein levels on growth performance,serum biochemistry,immunity and antioxidant indexes of lactating calves[J]. Feed Research,45(13):12-15.]doi:10.13557/j.cnki.issn1002-2813.2022.13.003.
    裴利君,杨巧丽,王鹏飞,滚双宝. 2021. 合作猪夏冬季的肠道菌群结构[J]. 甘肃农业大学学报,56(4):8-15.[Pei L J,Yang Q L,Wang P F,Gun S B. 2021. Study on the structure of intestinal microflora in Hezuo pigs in summer and winter[J]. Journal of Gansu Agricultural University,56(4):8-15.]doi:10.13432/j.cnki.jgsau.2021.04.002.
    石璐璐,王哲奇,徐元庆,毛晨羽,郭世伟,金晓,史彬林 . 2020. 热应激对绵羊血清免疫和抗氧化指标及相关基因相对表达量的影响[J]. 动物营养学报,32(11):5275-5284.[Shi L L,Wang Z Q,Xu Y Q,Mao C Y,Guo S W,Jin X,Shi B L. 2020. Effects of heat stress on serum immune and antioxidant indexes and relative expression of related genes in sheep[J]. Chinese Journal of Animal Nutrition,32(11):5275-5284.]doi:10.3969/j.issn.1006-267x. 2020.11.032.
    舒迎霜,贺濛初,桂雪儿,夏晓冬,冯士彬,李玉,王希春,吴金节 . 2020. 黄芪多糖对犬盲肠菌群的影响[J]. 甘肃农业大学学报,55(2):1-8.[Shu Y S,He M C,Gui X E,Xia X D,Feng S B,Li Y,Wang X C,Wu J J. 2020. Effect of Astragalus polysaccharide on cecal flora in canines[J].Journal of Gansu Agricultural University,55(2):1-8.]doi: 10.13432/j.cnki.jgsau.2020.02.001.
    谭占坤,池福敏,商振达,商鹏,刘锁珠,强巴央宗. 2022. 放牧藏猪、舍饲藏猪与商品猪粪便真菌群落组成及其与饲粮纤维消化的相关性研究[J]. 微生物学报,62(1):259-274.[Tan Z K,Chi F M,Shang Z D,Shang P,Liu S Z,QiangbaYangzong. 2022. Fungal community in the feces of grazing Tibetan pigs,captive Tibetan pigs,and commercial pigs and its interaction with dietary fiber digestion[J]. Acta Microbiologica Sinica,62(1):259-274.]doi:10.13343/j.cnki.wsxb.20210215.
    王柏辉,杨蕾,罗玉龙,王宇,袁倩,王德宝,靳烨. 2018. 饲养方式对苏尼特羊肠道菌群与脂肪酸代谢的影响[J]. 食品科学,39(17):1-7.[Wang B H,Yang L,Luo Y L,Wang Y,Yuan Q,Wang D B,Jin Y. 2018. Effect of feeding pattern on intestinal flora and fatty acid metabolism in Sunit sheep[J]. Food Science,39(17):1-7.]doi:10.7506/spkx 1002-6630-201817001.
    魏凤仙,胡骁飞,张敏红,李绍钰,徐彬,蔺萍,孙全友,李浩. 2013. 相对湿度和氨气应激对肉仔鸡血氨水平及细胞因子含量的影响[J]. 动物营养学报,25(10):2246-2253.[Wei F X,Hu X F,Zhang M H,Li S Y,Xu B,Lin P,Sun Q Y,Li H. 2013. Effects of relative humidity and ammonia stress on plasma ammonia level and cytokine contents of broilers[J]. Chinese Journal of Animal Nutrition,25(10): 2246-2253.]doi:10.3969 /j.issn.1006-267x.2013.10.008.
    苑妞妞,潘琪浩,胡微唯,张超楠,高腾云,廉红霞,赵丽,孙宇. 2023. 西藏高原环境舍饲与半舍饲模式对娟姗牛乳品质、瘤胃发酵和血清生化指标的影响[J]. 动物营养学报,35(5):3093-3103.[Yuan N N,Pan Q H,Hu W W,Zhang C N,Gao T Y,Lian H X,Zhao L,Sun Y. 2023.Effects of shed feeding and semi-shed feeding patterns on milk quality,rumen fermentation and serum biochemical indices of jersey cattle in Tibet plateau[J]. Chinese Journal of Animal Nutrition,35(5):3093-3103.]doi:10.12418/CJAN2023.288.
    张星星,黄新,韩猛立,蒋烈戈,张倩,高攀,刘鹏,吴桐忠,钟发刚. 2021. 放牧与舍饲条件下夏洛莱牛肠道微生物多样性及差异分析[J]. 新疆农业科学,58(9):1729-1739.[Zhang X X,Huang X,Han M L,Jiang L G,Zhang Q,Gao P,Liu P,Wu T Z,Zhong F G. 2021. Differences of the intestinal microbial flora diversity and composition of barn feeding and grazing Charolais[J]. Xinjiang Agricultural Sciences,58(9):1729-1739.]doi:10.6048/j.issn. 1001-4330.2021.09.020.
    赵晓雅,史晨迪,田沛知,陈佳欣,段春辉,纪守坤,严慧,刘月琴,张英杰. 2022. 牛至精油对羔羊生长性能、养分表观消化率及血清免疫和抗氧化指标的影响[J]. 动物营养学报,34(4):2534-2541.[Zhao X Y,Shi C D,Tian P Z,Chen J X,Duan C H,Ji S K,Yan M,Liu Y Q,Zhang Y J. 2022. Effects of oregano essential oil on growth performance,nutrient apparent digestibility and serum immune and antioxidant indexes of lamb[J]. Chinese Journal of Animal Nutrition,34(4):2534-2541.]doi:10.3969/j.issn. 1006-267x.2022.04.048.

    Arenas J. 2022. Editorial:Pathogenic Neisseria:Pathogenicity,vaccines,and antibiotic resistance[J]. Frontiers in Cellular and Infection Microbiology,12:1119244. doi:10.3389/fcimb.2022.1119244.

    Aziz Q,Doré J,Emmanuel A,Guarner F,Quigley E M M. 2012. Gut microbiota and gastrointestinal health:Current concepts and future directions[J]. Neurogastroenterology & Motility,25(1):4-15. doi:10.1111/nmo.12046.

    Baltazar-Díaz T A,González-Hernández L A,Aldana-Ledesma J M,Peña-Rodríguez M,Vega-Magaña A N,ZepedaMorales A S M,López-Roa R I,del Toro-Arreola S,Martínez-López E,Salazar-Montes A M,Bueno-Topete M R. 2022. Escherichia/Shigella,SCFAs,and metabolic pathways—The triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from Western Mexico[J]. Microorganisms,10(6):1231. doi:10. 3390/microorganisms10061231.

    Beller A,Kruglov A,Durek P,von Goetze V,Werner K,Heinz G A,Ninnemann J,Lehmann K,Maier R,Hoffmann U,Riedel R,Heiking K,Zimmermann J,Siegmund B,Mashreghi M F,Radbruch A,Chang H D. 2020. Specific microbiota enhances intestinal IgA levels by inducing TGF- β in T follicular helper cells of Peyer's patches in mice[J]. European Journal of Immunology,50(6):783-794.doi:10.1002/eji.201948474.

    Chen J,Huang C L,Wang J J,Zhou H,Lu Y Y,Lou L H,Zheng J Y,Tian L,Wang X P,Cao Z W,Zeng Y. 2017. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats[J]. PLoS One,12(4):e0176583. doi: 10.1371/journal.pone.0176583.

    Chen S S,He R N,He B H,Xu L,Zhang S. 2021. Potential roles of exosomal lncRNAs in the intestinal mucosal immune barrier[J]. Journal of Immunology Research,2021: 7183136. doi:10.1155/2021/7183136.

    Dabke K,Hendrick G,Devkota S. 2019. The gut microbiome and metabolic syndrome[J]. The Journal of Clinical Investigation,129(10):4050-4057. doi:10.1172/JCI129194.

    Dande S S,Bhatt V D,Patil N V,Joshi C G. 2015. The camel faecal metagenome under different systems of management:Phylogenetic and gene-centric approach[J]. Livestock Science,178:108-118. doi:10.1016/j.livsci.2015.05. 024.

    doi:10.1128/mBio.02706-20.

    Fidanza M,Panigrahi P,Kollmann T R. 2021. Lactiplantibacillus plantarum-Nomad and Ideal Probiotic[J]. Frontiers in Microbiology,12:712236. doi:10.3389/fmicb.2021.712 236.

    Fu X,Zhang Y P,Shi B,Wu X K,Zhao H W,Xin Z B,Yang J S. 2022. Benzoic acid metabolism and lipopolysaccharide synthesis of intestinal microbiome affects the health of ruminants under free-range and captive mode[J]. Life(Basel),12(7):1071. doi:10.3390/life12071071.

    Gharechahi J,Sarikhan S,Han J L,Ding X Z,Salekdeh G H. 2022. Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates[J]. NPJ Biofilms and Microbiomes,8(1):46.doi:10.1038/s41522-022-00309-9.

    Gharechahi J,Vahidi M F,Ding X Z,Han J L,Salekdeh G H. 2020. Temporal changes in microbial communities attached to forages with different lignocellulosic compositions in cattle rumen[J]. FEMS Microbiology Ecology,96(6):fiaa069. doi:10.1093/femsec/fiaa069.

    Han X P,Liu H J,Hu L Y,Zhao N,Xu S X,Lin Z J,Chen Y W. 2021. Bacterial community characteristics in the gastrointestinal tract of yak(Bos grunniens)fully grazed on pasture of the Qinghai-Tibetan Plateau of China[J]. Animals(Basel),11(8):2243. doi:10.3390/ani11082243.

    Huang P,Jiang A Q,Wang X X,Zhou Y,Tang W H,Ren C F,Qian X,Zhou Z R,Gong A H. 2021. NMN maintains intestinal homeostasis by regulating the gut microbiota[J]. Frontiers in Nutrition,8:714604. doi:10.3389/fnut.2021.714604.

    Jin M L,Zhu Y M,Shao D Y,Zhao K,Xu C L,Li Q,Yang H,Huang Q S,Shi J L. 2017. Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats[J]. International Journal of Biological Macromolecules,94(A):1-9. doi:10.1016/j.ijbiomac.2016.09. 099.

    John G K,Mullin G E. 2016. The gut microbiome and obesity[J]. Current Oncology Reports,18(7):45. doi:10.1007/s11912-016-0528-7.

    Kurilshikov A,Wijmenga C,Fu J Y,Zhernakova A. 2017. Host genetics and gut microbiome:Challenges and perspectives[J]. Trends in Immunology,38(9):633-647. doi:10.1016/j.it.2017.06.003.

    Kuziel G A,Rakoff-Nahoum S. 2022. The gut microbiome[J].Current Biology,32(6):R257-R264. doi:10.1016/j. cub. 2022.02.023.

    Li M M,Zhou Y,Zuo L,Nie D,Li X A. 2021. Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice[J]. Nutrition,81:110959. doi:10.1016/j.nut.2020.110959.

    Lynch S V,Pedersen O. 2016. The human intestinal microbiome in health and disease[J]. New England Journal of Medicine,375(24):2369-2379. doi:10.1056/NEJMra1600266.

    Macchione I G,Lopetuso L R,Ianiro G,Napoli M,Gibiino G,Rizzatti G,Petito V,Gasbarrini A,Scaldaferri F. 2019.

    Akkermansia muciniphila:Key player in metabolic and gastrointestinal disorders[J]. European Review for Medical and Pharmacological Sciences,23(18):8075-8083. doi: 10.26355/eurrev_201909_19024.

    Martinez-Garcia M,Brazel D M,Swan B K,Arnosti C,Chain P S G,Reitenga K G,Xie G,Poulton N J,Gomez M L,Masland D E D,Thompson B,Bellows W K,Ziervogel K,Lo C C,Ahmed S,Gleasner C D,Detter C J,Stepanauskas R. 2012. Capturing single cell genomes of active polysaccharide degraders:An unexpected contribution of Verrucomicrobia[J]. PLoS One,7(4):e35314. doi:10.1371/jour‐nal.pone.0035314.

    doi:10.1128/AEM.01993-19.

    Pan Y S,An H R,Fu T,Zhao S Y,Zhang C W,Xiao G H,Zhang J R,Zhao X F,Hu G Z. 2018. Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation[J].BMC Microbiology,18(1):182. doi:10.1186/s12866-018-1327-0.

    Pidcock S E,Skvortsov T,Santos F G,Courtney S J,Sui-Ting K,Creevey C J,Huws S A. 2021. Phylogenetic systematics of Butyrivibrio and Pseudobutyrivibrio genomes illustrate vast taxonomic diversity,open genomes and an abundance of carbohydrate-active enzyme family isoforms[J].Microbial Genomes,7(10):000638. doi:10.1099/mgen. 0.000638.

    Sahin O,Yaeger M,Wu Z W,Zhang Q J. 2017. Campylobacterassociated diseases in animals[J]. Annual Review of Animal Biosciences,5:21-42. doi:10.1146/annurev-animal-022516-022826.

    Shapira M. 2016. Gut microbiotas and host evolution:Scaling up symbiosis[J]. Trends in Ecology & Evolution,31(7): 539-549. doi:10.1016/j.tree.2016.03.006.

    Sheppard S K,Maiden M C J. 2015. The evolution of Campylobacter jejuni and Campylobacter coli[J]. Cold Spring Harbor Perspectives in Biology,7(8):a018119. doi:10.1101/cshperspect.a018119.

    Song P F,Qin W,Huang Y G,Wang L,Cai Z Y,Zhang T Z. 2020. Grazing management influences gut microbial diversity of livestock in the same area[J]. Sustainability,12(10):4160. doi:10.3390/su12104160.

    Sun Y W,Sun Y J,Shi Z H,Liu Z S,Zhao C,Lu T F,Gao H,Zhu F,Chen R,Zhang J,Pan R L,Li B G,Teng L W,Guo S T. 2020. Gut microbiota of wild and captive alpine musk deer(Moschus chrysogaster)[J]. Frontiers in Microbiology,10:3156. doi:10.3389/fmicb.2019.03156.

    Tremaroli V,Bäckhed F. 2012. Functional interactions between the gut microbiota and host metabolism[J]. Nature,489(7415):242-249. doi:10.1038/nature11552.

    Veldhoen M,Ferreira C. 2015. Influence of nutrient-derived metabolites on lymphocyte immunity[J]. Nature Medicine, 21(7):709-718. doi:10.1038/nm.3894.

    Wang B H,Luo Y L,Su R N,Yao D,Hou Y R,Liu C,Du R,Jin Y. 2020. Impact of feeding regimens on the composition of gut microbiota and metabolite profiles of plasma and feces from Mongolian sheep[J]. Journal of Microbiology,58(6):472-482. doi:10.1007/s12275-020-9501-0.

    Wang L,Cao Z M,Zhang L L,Li J M,Lv W L. 2022. The role of gut microbiota in some liver diseases:From an immunological perspective[J]. Frontiers in Immunology,13:923 599. doi:10.3389/fimmu.2022.923599.

    Wang Y P,Fu Y H,He Y Y,Kulyar M F A,Iqbal M,Li K,Liu J G. 2021. Longitudinal characterization of the gut bacterial and fungal communities in yaks[J]. Journal of Fungi,7(7):559. doi:10.3390/jof7070559.

    Wen Y,Li S F,Wang Z S,Feng H,Yao X T,Liu M J,Chang J J,Ding X Y,Zhao H Y,Ma W T. 2022. Intestinal microbial diversity of free-range and captive yak in Qinghai Province[J]. Microorganisms,10(4):754. doi:10.3390/microorganisms10040754.

    Zafar H,Saier M H. 2021. Gut Bacteroides species in health and disease[J]. Gut Microbes,13(1):1848158. doi:10. 1080/19490976.2020.1848158.

    Zhang H,Shao M X,Huang H,Wang S J,Ma L L,Wang H N,Hu L P,Wei K,Zhu R L. 2018. The dynamic distribution of small-tail Han sheep microbiota across different intestinal segments[J]. Frontiers in Microbiology,9:00032. doi: 10.3389/fmicb.2018.00032.

    Zhao L,Zhang Q,Ma W N,Tian F,Shen H Y,Zhou M M. 2017. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J]. Food and Function,8(12):4644-4656. doi: 10.1039/c7fo01383c.

    Zhu Y B,Li X,Lousang·Zhaxi,Suolang·Zhaxi,Suolang,Ciyang,Sun G M,Cidan·Yangji,Basang·Wangdui. 2022.

    House feeding pattern increased male yak fertility by improving gut microbiota and serum metabolites[J]. Frontiers in Veterinary Science,9:989908. doi:10.3389/fvets. 2022.989908.

  • 期刊类型引用(4)

    1. 黄思翔,胡晓龙,汪江,付师一,杨艳,宣亮,陈彪,刘三凤,黄建西,涂韵,王尊,王纪开,吴东晓,毛辉荣. 笼养和散养模式对泰和乌骨鸡肠道菌群的影响. 中国家禽. 2025(04): 81-88 . 百度学术
    2. 王振阳,胡杨恺,李泽伦,王嘉军,王豪杰,邓红雨,范佳英. 芦竹叶替代苜蓿干草对奶牛瘤胃体外发酵特性和菌群结构的影响. 动物营养学报. 2024(11): 7196-7211 . 百度学术
    3. 耿国华,朱华平,马冬梅,钟再选,赵淑皓,樊佳佳,田园园,韩芳,刘贤德. 不同养殖模式下生长迟缓与正常华南鲤肠道健康状况的比较. 南方农业学报. 2024(10): 3147-3159 . 本站查看
    4. 曾顺利. 四川山区南江黄羊高效饲养技术要点. 农业工程技术. 2024(28): 90-91 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  272
  • HTML全文浏览量:  3
  • PDF下载量:  16
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-09-14
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回