Identification and antagonistic mechanism of biocontrol bacteria against Rhizoctonia solani
-
摘要: 【目的】筛选对烟草靶斑病菌具有生防潜力的拮抗细菌,为烟草靶斑病的生物防治提供菌种资源。【方法】以立枯丝核菌为目标病原菌,采用稀释涂布平板法从广西健康烤烟根际土壤中分离、纯化细菌;采用平板对峙法筛选拮抗效果较好的菌株,测定抑菌效果;扫描电镜和超景深三维显微镜观察拮抗菌株处理立枯丝核菌菌丝的形态变化及菌落形态,并测定生理生化特征;采用细菌通用引物16S rDNA序列及gyrA基因对拮抗菌株DNA进行PCR扩增,采用NCBI的BLAST对测序结果同源对比分析,并基于亲缘关系较近的序列及模式菌株构建系统发育进化树;采用双平板对扣法初步探索拮抗菌株挥发性物质抑菌作用;利用顶空固相微萃取和气相色谱—质谱对拮抗菌株挥发性物质进行鉴定;通过对K326烤烟品种盆栽试验鉴定拮抗菌株对烟草靶斑病的防治效果。【结果】筛选到1株具有生防作用的拮抗菌株GXLL3319,结合该菌株菌落形态和生理生化特征及系统发育进化分析结果将该菌株鉴定为枯草芽孢杆菌(Bacillus subtilis)。该菌株对立枯丝核菌、烟草炭疽菌和尖孢镰刀菌3种烟草病原真菌抑制率均在50%以上;该菌株及其挥发性物质对立枯丝核菌抑制率分别为69.70%和59.22%。扫描电镜结果显示,经GXLL3319处理后的立枯丝核菌菌丝生长受到明显抑制,菌丝出现断裂、膨大和消解等现象。挥发性物质鉴定出31种抑菌活性物质,包括酮类、醇类、醛类、杂环类、硫化物、有机酸类、酯类、烷烃类和酚类。盆栽试验结果表明,GXLL3319菌液能有效抑制烟草靶斑病的发生,相对防效达66.07%,与15%井冈霉素A可溶粉剂的相对防效差异不显著(P>0.05)。【结论】枯草芽孢杆菌GXLL3319能有效抑制立枯丝核菌菌丝生长,其产生的挥发性物质包含多种抑菌活性物质,GXLL3319对烟草靶斑病有较好的防治效果,具有开发成为烟草靶斑病生防菌的潜力。Abstract: 【Objective】To screen antagonistic bacteria with biocontrol potential against Rhizoctonia solani,to provide strains for biocontrol on tobacco target spot.【Method】The dilution coated plate method was used to isolate and purify the bacteria from the rhizosphere soil of healthy flue-cured tobacco in Guangxi,with R. solani as the target pathogen. The plate confrontation method was used to screen the strains with good antagonistic effect,and the antibacterial effect was determined. Scanning electron microscopy and ultra depth of field 3D microscope was used to observe the morphological changes of mycelia of R. solani that treated with antagonistic strains and colony morphology,and measured its physiological and biochemical characteristics. PCR amplification was performed on the DNA of antagonistic strains using universal bacterial primers 16S rDNA sequences and gyrA gene. The sequencing results were compared and analyzed for homology using BLAST from NCBI. A phylogenetic tree was constructed based on sequences and type strains with close genetic relationships. The antibacterial effect of volatile organic compounds(VOCs)of antagonistic strains was preliminarily explored by double-plate buckle method. The volatile compounds of antagonistic strains were identified by headspace solidphase microextraction(HS-SPME)and gas chromatography-mass spectrometry(GC-MS). Identified the control effect of antagonistic strains on tobacco target spot disease through pot experiments on K326 tobacco variety.【Result】An antagonistic strain GXLL3319 with biocontrol activity was screened,and combined with the colony morphology,physiological and biochemical characteristics,and phylogenetic analysis results,the strain was identified as Bacillus subtilis. The inhibition rate of this strain on three kinds of tobacco pathogenic fungi,namely R. solani,Colletotrichum nicotianae and Fusarium oxysporum,was above 50%. The inhibition rate of this strain and its volatile substances on R. solani was 69.70% and 59.22%,respectively. The results of scanning electron microscopy showed that the mycelial growth of R. solani treated with GXLL3319 was obviously inhibited,and the mycelia were fractured,swollen and dissolving. Thirty-one antibacterial active substances was identified from VOCs,including ketones,alcohols,aldehydes,heterocycles,sulfides, organic acids,esters,alkanes and phenols. The results of pot experiment showed that GXLL3319 bacterial fluid could effectively inhibit the occurrence of tobacco target spot,and the relative control efficacy reached 66.07%,which was not significantly different(P>0.05)from that of 15% Jinggangmycin A soluble powder.【Conclusion】B. subtilis GXLL3319 can effectively inhibit the mycelial growth of R. solani,its VOCs contain a variety of antibacterial active substances. GXLL3319 has a good control efficacy on tobacco target spot and has the potential to be developed as a biocontrol bacteria against tobacco target spot.
-
-
陈丹阳,甘勇,张万金,杨章明,陈立波,马应超,曹洋,安德荣. 2022. 烟草靶斑病拮抗菌的筛选鉴定及抗逆性研究[J/OL]. 四川农业大学学报. https://doi.org/10.16036/j.issn.1000-2650.202108044. [Chen D Y,Gan Y,Zhang W J,Yang Z M,Chen L B,Ma Y C,Cao Y,An D R. 2022.Screening,identification and stress resistance of antagonistic against tobacco target spot[J/OL]. Journal of Sichuan Agricultural University. https://doi.org/ 10.16036/j.issn.1000-2650.202108044.]doi: 10.16036/j.issn.1000-2650.202108044.
邓浏平,陈怡璇,傅雪平,周毅,罗真华,刘怡轩,王旋,张阳. 2021. 烟草靶斑病致病机理及防治技术研究进展[J]. 湖南农业科学,(3):114-118.[Deng L P,Chen Y X,Fu X P, Zhou Y,Luo Z H,Liu Y X,Wang X,Zhang Y. 2021.Research progress on pathogenic mechanism and control technology of tobacco target spot[J]. Hunan Agricultural Sciences,(3):114-118.]doi:10.16498/j.cnki.hnnykx.2021. 003.028. 东秀珠,蔡秒英. 2001. 常见细菌系统鉴定手册[M]. 北京:科学出版社.[Dong X Z,Cai M Y. 2001. Handbook of systematic identification of common bacteria[M]. Beijing:Science Press.] 郭洁心,张育铭,朱洪磊,任璐,张宝俊. 2020. 解淀粉芽孢杆菌 XJ5 挥发性物质抑菌活性及对苹果褐腐病防效测定[J]. 中国生物防治学报,36(4):575-580.[Guo J X,Zhang Y M,Zhu H L,Ren L,Zhang B J. 2020. Antifungal activity of volatile organic compounds from Bacillus amyloliquefaciens XJ5 and control effect against Monilinia fructigena[J]. Chinese Journal of Biological Control,36(4):575-580.]doi: 10.16409/j.cnki.2095-039x.2020.04.018. 姜北辰,贺凯茹,杨姗姗,李欣霏,包雨飞,杨慧,武俊瑞. 2023. 枯草芽孢杆菌抑菌成分研究进展[J]. 乳业科学与技术,46(2):35-41.[Jiang B C,He K R,Yang S S,Li X F,Bao Y F,Yang H,Wu J R. 2023. Advances in the study of bacteriostatic substances from Bacillus subtilis[J]. Journal of Dairy Science and Technology,46(2):35-41.]doi: 10.7506/rykxyjs1671-5187-20230119-003. 李枢妍,阳黎恒,肖雪婷,胡锦欢,张红岩,申乃坤,姜明国. 2021. 一株香蕉枯萎病拮抗菌的筛选、鉴定及生防效果研究[J]. 南方农业学报,52(7):1826-1834.[Li S Y, Yang L H,Xiao X T,Hu J H,Zhang H Y,Shen N K,Jiang M G. 2021. Screening,identification and biocontrol effect of antagonistic bacteria against banana Fusarium wilt[J]. Journal of Southern Agriculture,52(7):1826-1834.]doi: 10.3969/j.issn.2095-1191.2021.07.011. 李艳玲. 2019. 根际微生物群落对挥发性有机物和作物生长的影响[D]. 北京:中国农业科学院.[Li Y L. 2019. Effects of rhizosphere microbiomes on volatile organic compounds and crop growth[D]. Beijing:Chinese Academy of Agricultural Sciences.] 李艺池,梁金昌,韦承建,王东坤,王卫民,陈勇华,宋光龙,胡希好,程德杰,任广伟,王晓强. 2023. 暹罗芽孢杆菌挥发性物质拮抗下烟草赤星病菌转录组分析[J]. 中国烟草科学,44(2):27-34.[Li Y C,Liang J C,Wei C J,Wang D K, Wang W M,Chen Y H,Song G L,Hu X H,Cheng D J, Ren G W,Wang X Q. 2023. Transcriptome analysis of Alternaria alternata under the antagonism of volatile substances from Bacillus siamesis[J]. Chinese Tobacco Science,44(2):27-34.]doi:10.13496/j.issn.1007-5119.2023.02. 005. 李悦,余惠荣,李蔚,赵秀香. 2015. 侧孢短芽孢杆菌B8对两种植物病原菌抗菌机制初步研究[J]. 中国植保导刊,35(3):12-16.[Li Y,Yu H R,Li W,Zhao X X. 2015. Preliminary study on antagonistic mechanism of Brevibacillus laterosporus B8 against two plant pathogenic fungi[J]. China Plant Protection,35(3):12-16.]doi:10.3969/j.issn. 1672-6820.2015.03.002. 梁艳琼,唐文,董文敏,吴伟怀,李锐,习金根,谭施北,郑金龙,黄兴,陆英,贺春萍,易克贤. 2019. 枯草芽孢杆菌菌株Czk1挥发性物质的抑菌活性及其组分分析[J]. 南方农业学报,50(11):2465-2474.[Liang Y Q,Tang W,Dong W M,Wu W H,Li R,Xi J G,Tan S B,Zheng J L,Huang X,Lu Y,He C P,Yi K X. 2019. Antifugal effect and components analysis of volatile organic compounds from Bacillus subtilis Czk1[J]. Journal of Southern Agriculture,50(11):2465-2474.]doi:10.3969/j.issn.2095-1191.2019.11. 12. 刘博,蒲乐莹,陶科,金洪,侯太平. 2022. 紫花苜蓿根腐病生防菌的筛选、鉴定及发酵条件优化[J]. 南方农业学报,53(8):2142-2152.[Liu B,Pu L Y,Tao K,Jin H,Hou T P. 2022. Screening,identification and optimization of fermentation conditions of biocontrol fungi for alfalfa root rot[J]. Journal of Southern Agriculture,53(8):2142-2152.]doi: 10.3969/j.issn.2095-1191.2022.08.007. 陆春宇,狄义宁,黎青虹,刘涵,刘鲁峰,何丽莲,李富生. 2022. 3 株甘蔗内生芽孢杆菌的抑菌促生活性评估[J]. 云南农业大学学报(自然科学)37(5):761-768.[Lu C Y, Di Y N,Li Q H,Liu H,Liu L F,He L L,Li F S. 2022.Evaluation of antibacterial and growth-promoting activity of three endophytic Bacillus from sugarcane[J]. Journal of Yunnan Agricultural University(Natural Science),37(5):761-768.]doi: 10.12101/j.issn.1004-390X(n).202201050. 罗晓宇. 2020. 具抑菌促生长挥发物的拮抗细菌筛选及挥发物有效成分鉴定[D]. 南京:南京农业大学.[Luo X Y. 2020. Screening for antagonistic bacteria producing volatiles with strong antifunfal and plant growth-promoting activity and identification of the volatile constituents[D]. Nanjing:Nanjing Agricultural University]doi: 10.27244/d.cnki.gnjnu.2020.001300. 莽春霞. 2016. 烟草靶斑病生防链霉菌的鉴定、作用机理及应用研究[D]. 沈阳:沈阳农业大学.[Mang C X. 2016. The identification,action mechanism and application efficiency of biocontrol Streptomyces against tobacco target spot disease[D]. Shenyang:Shenyang Agricultural University.] 濮永瑜,包玲凤,何翔,刘芮,张庆,施竹凤,何永宏,杨佩文. 2022. 烟草青枯病和黑胫病拮抗细菌的筛选、鉴定及防效研究[J]. 中国农学通报,38(7):116-123.[Pu Y Y,Bao L F,He X,Liu R,Zhang Q,Shi Z F,He Y H,Yang P W. 2022. Screening,identification and control efficacy of antagonistic bacteria against Ralstonia solanacearum and Phytophthora parasitica[J]. Chinese Agricultural Science Bulletin,38(7):116-123.]doi: 10.11924/j.issn.1000-6850.casb2021-0375. 邱梦娟,黎妍妍,徐婷婷,刘涵斐,吴辰飞,郑露,黄俊斌,李锡宏. 2022. 湖北省烟草靶斑病病原鉴定及其菌丝融合群遗传分化研究[J]. 中国烟草科学,43(5):50-55.[Qiu M J,Li Y Y,Xu T T,Liu H F,Wu C F,Zheng L,Huang J B, Li X H. 2022. Identification and anastomosis group study of the tobacco target spot pathogen in Hubei Province[J]. Chinese Tobacco Science,43(5):50-55.]doi: 10.13496/j.issn.1007-5119.2022.05.008. 邱月. 2022. 枯草芽孢杆菌在现代农业中的应用[J]. 园艺与种苗,(7):81-85.[Qiu Y. 2022. Application of Bacillus subtilis in modern agriculture[J]. Horticulture & Seed, (7):81-85.]doi: 10.16530/j.cnki.cn21-1574/s.2022.07.031. 孙力. 2020. 贝莱斯芽孢杆菌 CanL-30 挥发性有机物活性研究及菌剂研制[D]. 武汉:华中农业大学.[Sun L. 2020.Bioactivities of the volatile organic compounds of Bacillus velezensis CanL-30 and formulation of a wettable powder[D]. Wuhan:Huazhong Agricultural University.]doi:10. 27158/d.cnki.ghznu.2020.000542. 谭海文. 2012. 广西烟草真菌性病害调查[D]. 南宁:广西大学.[Tan H W. 2012. Investigation on fungal diseases of tobacco in Guangxi[D]. Nanning:Guangxi University.] 吴婕,席亚东,李洪浩,王晓黎,彭化贤. 2015. 四川省水稻纹枯病菌对井冈霉素抗药性监测[J]. 西南农业学报,28(6):2501-2504.[Wu J,Xi Y D,Li H H,Wang X L,Peng H X. 2015. Monitoring of resistance of thenatephorus cucumeris to Jinggangmysin in Sichuan[J]. Southwest China Journal of Agricultural Sciences,28(6):2501-2504.]doi: 10.16213/j.cnki.scjas.2015.06.029. 吴晓晖,谢永丽,Renato D'Ovidio,张英,芦光新,辛总秀,Stefania Masci. 2017. 3株分离自高寒草甸根际芽孢杆菌的分子鉴定及其生物活性[J]. 草业科学,34(12):2454-2463.[Wu X H,Xie Y L,D'Ovidio R,Zhang Y,Lu G X, Xin Z X,Masci S. 2017. Molecular identification and biological activity of three Bacillus strains isolated from an alpine meadow rhizosphere in Qinghai Province[J]. Pratacultural Science,34(12):2454-2463.]doi:10.11829/j.issn. 10010629.20170055. 吴元华,王左斌,刘志恒,赵秀香,粱景颐. 2006. 我国烟草新病害-靶斑病[J]. 中国烟草学报,(6):22.[Wu Y H,Wang Z B,Liu Z H,Zhao X X,Liang J Y. 2006. A new tobacco disease in China-Target spot disease[J]. Acta Tabacaria Sinica,(6):22.]doi:10.3321/j.issn:1004-5708.2006.06. 005. 肖志鹏,李玲玲,母婷婷,单雪华,陆峰,唐前君,刘天波. 2022. 烟草赤星病菌拮抗菌解淀粉芽孢杆菌 YW-2-6 鉴定及生防效果[J]. 中国生物防治学报,2022,38(6):1598-1607.[Xiao Z P,Li L L,M T T,Shan X H,Lu F,Tang Q J,Liu T B. 2022. Identification and biocontrol effect of Bacillus amyloliquefaciens YW-2-6 against Alternaria alternata[J]. Chinese Journal of Biological Control,38(6):1598-1607.]doi:10.16409/j. cnki. 2095-039x. 2022.0 8.005. 谢越盛. 2016. 植物有益细菌筛选及其挥发性化合物的防病促生机理分析[D]. 南京:南京农业大学.[Xie Y S. 2016.Screening of plant growth-promoting rhizobacteria and analysis of growth-promoting and biocontrol mechanism of its volatile organic compounds[D]. Nanjing:Nanjing Agricultural University.]doi:10.27244/d.cnki.gnjnu.2016. 000021. 杨芝霓,鲁萌萌,黄穗萍,唐利华,陈小林,郭堂勋,莫贱友,张萌,李其利. 2023. 产挥发性物质芽孢杆菌对芒果炭疽菌的抑制作用及对芒果炭疽病的防病效果[J]. 植物病理学报,53(6):1180-1191.[Yang Z N,Lu M M,Huang S P, Tang L H,Chen X L,Guo T X,Mo J Y,Zhang M,Li Q L. 2023. Inhibitory effect of volatile substance produced by Bacillus on Colletotrichum gloesporioides and its control effect on mango anthracnose[J]. Acta Phytopathologica Sinica,53(6):1180-1191.]doi:10.13926/j.cnki.apps.00 1312. 易婷,黄纯杨,李治模,王勇,刘东阳,彭丽媛,殷洁,黄建国. 2022. 贝莱斯芽孢杆菌菌株HY19对多种作物病原真菌的拮抗和对烤烟赤星病的防治作用[J]. 植物保护学报, 49(3):966-974.[Yi T,Huang C Y,Li Z M,Wang Y,Liu D Y,Peng L Y,Yin J,Huang J G. 2022. Antagonism of a new strain of antagonistic bacterium Bacillus velezensis HY19 against several crop pathogenic fungi and its use in control of tobacco brown spot disease[J]. Journal of Plant Protection,49(3):966-974.]doi:10.13802/j. cnki. zwbhxb.2022.2020242. 余水,丁海霞,罗玉英,程欢欢,姚伟伟,彭丽娟. 2020. 贝莱斯芽孢杆菌MT310生防机制初探[J]. 山地农业生物学报, 39(5):23-28.[Yu S,Ding H X,Luo Y Y,Cheng H H, Yao W W,Peng L J. 2020. Primary research on bio-control mechanism of Bacillus velezensis MT310[J]. Journal of Mountain Agriculture and Biology,39(5):23-28.]doi: 10.15958/j.cnki.sdnyswxb.2020.05.004. 张德珍,李婷婷,代惠洁,迟文娟,乔宁. 2020. 解淀粉芽孢杆菌JF-1对黄瓜的防病促生作用[J]. 北方园艺,(10):16-21.[Zhang D Z,Li T T,Dai H J,Chi W J,Qiao N. 2020.Effects of Bacillus amyloliquefaciens JF-1 on disease control against Fusarium wilt and growth promoting of cucumber[J]. Northern Horticulture,(10):16-21.]doi:10. 11937/bfyy.20194008. 赵晓曼. 2021. 贝莱斯芽孢杆菌 Bv-25 对南方根结线虫的生防作用分析[D]. 新乡:河南科技学院.[Zhao X M. 2021.Analysis of the biocontrol efficacy of Bacillus velezensis strain Bv-25 against Meloidogyne incognita[D]. Xinxiang:Henan Institute of Science and Technology.]doi:10.277 04/d.cnki.ghnkj.2021.000074. 郑文博. 2020. 克里本类芽孢杆菌PS04生物膜形成和定殖研究[D]. 广州:华南农业大学.[Zheng W B. 2020. Study on the biofilm formation and colonization of Paenibacillus kribbensis PS04[D]. Guangzhou:South China Agricultural University.]doi: 10.27152/d.cnki.ghanu.2020.000392. 郑香香,张娜,阎瑞香,陈存坤,关文强. 2019. 不同芽孢杆菌对极早熟桃采后链格孢菌的防治效果及其发酵液挥发性物质成分分析[J]. 食品工业科技,40(14):144-150.[Zheng X X,Zhang N,Yan R X,Chen C K,Guan W Q. 2019. Control effects of different Bacillus strains against postharvest Alternaria alternata of super-early maturing peach and analysis of volatile organic compounds of its fermented broth[J]. Science and Technology of Food Industry,40(14):144-150.]doi:10.13386/j.issn1002-0306.2019. 14.024. 邹海露. 2021. 湖南烟草靶斑病病原鉴定与生防菌筛选[D]. 长沙:湖南农业大学.[Zou H L. 2021. Pathogen identification and biocontrol strain screening of tobacco target spot disease in Hunan[D]. Changsha:Hunan Agricultural University.]doi: 10.27136/d.cnki.ghunu.2021.001061. 祖庆学,张翼飞,冯裕洋. 2022. 烟草靶斑病病原生物学与综合防控措施研究进展[J]. 现代农业科技,(14):71-76.[Zu Q X,Zhang Y F,Feng Y Y. 2022. Research progress on pathogen biology and comprehensive prevention and control measures of tobacco target spot[J]. Modern Agricultural Science and Technology,(14):71-76.] Chaouachi M,Marzouk T,Jallouli S,Elkahoui S,Gentzbittel L,Ben C,Djébali N. 2021. Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea[J]. Postharvest Biology and Technology,172:111389. doi:10.1016/j. postharvbio. 2020.111389.
Chaves-López C,Serio A,Gianotti A,Sacchetti G,Ndagijimana M,Ciccarone C,Stellarini A,Corsetti A,Paparella A. 2015. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth[J]. Journal of Applied Microbiology,119(2):487-499. doi:10.1111/jam. 12847.
Gao H Y,Li P Z,Xu X X,Zeng Q,Guan W Q. 2018. Research on volatile organic compounds from Bacillus subtilis CF-3:Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation[J]. Frontiers in Microbiology,9:456-471. doi: 10.3389/fmicb.2018.00456.
Gao Z F,Zhang B J,Liu H P,Han J C,Zhang Y J. 2017. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control, 105:27-39. doi: 10.1016/j.biocontrol.2016.11.007.
Hamon M A,Lazazzera B A. 2001. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis[J]. Molecular Microbiology,42(5):1199-1209. doi: 10.1046/j.1365-2958.2001.02709.x.
Lee S,Behringer G,Hung R,Bennett H. 2019. Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression[J]. Fungal Ecology,37:1-9.doi: 10.1016/j.funeco.2018.08.004.
Ling L J,Zhao Y H,Tu Y X,Yang C Y,Ma W X,Feng S L,Lu L,Zhang J. 2021. The inhibitory effect of volatile organic compounds produced by Bacillus subtilis CL2 on pathogenic fungi of wolfberry[J]. Journal of Basic Microbiology,61(2):110-121. doi: 10.1002/jobm.202000522.
Morita T,Tanaka I,Ryuda N,Ikari M,Ueno D,Someya T. 2019. Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R[J]. Heliyon,5(6):e01817. doi: 10.1016/j.heliyon.2019.e01817.
Pereg L,McMillan M. 2015. Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems[J]. Soil Biology and Biochemistry, 80:349-358. doi: 10.1016/j.soilbio.2014.10.020.
Singh S,Moholkar V S,Goyal A. 2013. Isolation,identification,and characterization of a cellulolytic Bacillus amyloliquefaciens strain SS35 from rhinoceros dung[J]. International Scholarly Research Notices,2013:728134. doi:10. 1155/2013/728134.
Tamura K,Peterson D,Peterson N,Stecher G,Nei M,Kumar S. 2011. MEGA5:Molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,28(10):2731-2739. doi: 10.1093/molbev/msr121.
Wang C W,Duan T K,Shi L X,Zhang X Q,Fan W X,Wang M Q,Wang J M,Ren L,Zhao X J,Wang Y. 2022. Characterization of volatile organic compounds produced by Bacillus siamensis YJ15 and their antifungal activity against Botrytis cinerea[J]. Plant Disease,106(9):2321-2329. doi: 10.1094/pdos-01-22-0230-re.
Xie S S,Liu J,Gu S Y,Chen X J,Jiang H Y,Ding T. 2020.Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata[J]. Annals of Microbiology,70(1):1-10. doi:10. 1186/s13213-020-01553-0.
Zhang D,Qiang R,Zhao J,Zhang J L,Cheng J N,Zhao D M, Fan Y N,Yang Z H,Zhu J H. 2022. Mechanism of a volatile organic compound (6-methyl-2-heptanone) emitted from Bacillus subtilis ZD01 against Alternaria solani in potato[J]. Frontiers in Microbiology,12:4109. doi:10. 3389/fmicb.2021.808337.
计量
- 文章访问数: 33
- HTML全文浏览量: 3
- PDF下载量: 8