Construction and identification of porcine SBP1 gene overexpression and interference recombinant lentiviral vector
-
摘要: 【目的】构建硒结合蛋白1基因(SBP1)过表达与干扰重组慢病毒载体,并通过感染猪骨骼肌卫星细胞验证SBP1基因的过表达和沉默效果,为后续揭示SBP1基因调控肌纤维类型转化及猪肉品质的分子机理打下基础。【方法】在对猪SBP1蛋白进行生物信息学分析的基础上,根据GenBank中猪SBP1基因mRNA序列(XM_021089863.1) PCR扩增SBP1基因全长序列,克隆至过表达慢病毒载体pHBLV-CMV上构建SBP1基因过表达重组慢病毒载体;同时针对猪SBP1基因设计3个干扰靶点序列和1个阴性对照序列,分别克隆至干扰慢病毒载体pHBLV-U6上构建SBP1基因干扰重组慢病毒载体。以构建的重组慢病毒载体感染猪骨骼肌卫星细胞,经嘌呤霉素筛选获得稳定表达细胞系,并采用实时荧光定量PCR和Western blotting检测SBP1基因及其蛋白的表达情况。【结果】猪SBP1蛋白分子式为C2523H3916N678O727S24,相对分子量为56.14839 kD,理论等电点(pI)为6.40,为稳定的分泌蛋白;存在39个潜在磷酸化位点,包括20个丝氨酸磷酸化位点、6个酪氨酸磷酸化位点及13个苏氨酸磷酸化位点。以构建的SBP1基因过表达与干扰重组慢病毒载体分别感染猪骨骼肌卫星细胞,经嘌呤霉素筛选2代后,在荧光显微镜下均能观察到绿色荧光。实时荧光定量PCR检测结果表明,过表达组的SBP1基因相对表达量极显著上调32.0倍(P<0.01,下同) ,干扰组中以shRNA-3的沉默效果达极显著水平,对应的SBP1基因相对表达量下调58.45%; Western blotting检测结果显示,过表达组的SBP1蛋白表达量极显著上调,而shRNA-1、shRNA-2和shRNA-3干扰组的SBP1蛋白表达量均极显著下调。【结论】基于猪骨骼肌卫星细胞成功构建了猪SBP1基因过表达稳定表达细胞系,同时鉴定出shRNA-3对SBP1基因的沉默效果最佳并获得稳定沉默细胞系,为后续揭示SBP1基因调控猪肉品质的分子机理打下了基础。Abstract: 【Objective】 This paper constructed a recombinant lentiviral vector for selenium-binding protein 1 gene (SBP1) overexpression and interference,and verified the overexpression and silencing effect of SBP1 gene by infecting the porcine skeletal muscle satellite cells,to lay the foundation for the subsequent revelation of SBP1 gene regulating the transformation of muscle fiber type and molecular mechanism of pork quality.【Method】 Based on the bioinformatics analysis of porcine SBP1 protein,the full-length sequence of SBP1 gene was amplified by PCR according to the mRNA sequence of porcine SBP1 gene in GenBank(XM_021089863.1),and cloned into the overexpression lentiviral vector pHBLV-CMV to construct the recombinant lentiviral vector of overexpression of the SBP1 gene. At the same time,three interfering target sequences and one negative control sequence were designed for the porcine SBP1 gene and cloned into the interfering lentiviral vector pHBLV-U6 to construct the interfering recombinant lentiviral vector for the SBP1 gene.Porcine skeletal muscle satellite cells were infected with constructed recombinant lentiviral vectors. Stable expression cell lines were obtained by puromycin screening. And the expression of SBP1 gene and its proteins were detected by realtime fluorescence quantitative PCR and Western blotting.【Result】 Porcine SBP1 protein had a molecular formula of C2523H3916N678O727S24,a relative molecular weight of 56.14839 kD,a theoretical isoelectric point(pI) of 6.40,and was a stable secreted protein;there were 39 potential phosphorylation sites,including 20 serine phosphorylation sites,6 tyrosine phosphorylation sites and 13 threonine phosphorylation sites. Porcine skeletal muscle satellite cells were infected with constructed SBP1 gene overexpression and interference recombinant lentiviral vectors,respectively,and green fluorescence was observed under fluorescence microscope after puromycin screening for 2 generations.The results of real-time fluorescence quantitative PCR showed that the relative expression of SBP1 gene in the overexpression group was extremely significantly up-regulated by 32.0 times(P<0.01,the same below),and the silencing effect of shRNA-3 in the interference group reached extremely significant level,corresponding to the down-regulation of the relative expression of the SBP1 gene by 58.45%. Western blotting showed that the SBP1 protein expression in the overexpression group was extremely significantly up-regulated,while the SBP1 protein expression in the shRNA-1,shRNA-2 and shRNA-3 interference groups were all extremely significantly down-regulated.【Conclusion】 Based on porcine skeletal muscle satellite cells,a stable expression cell line ofporcine SBP1geneis successfully constructed. At the same time,the best silencing effect of shRNA-3 on SBP1 gene is identified and a stable silencing cell line is obtained. The foundation is laid for the subsequent revelation of molecular mechanism of SBP1 gene in regulating the quality of pork.
-
Keywords:
- pig /
- SBP1 gene /
- skeletal muscle satellite cells /
- overexpression /
- interference /
- recombinant lentiviral vector
-
-
段栋栋, 李聪, 李梦雨, 李欣, 王克君, 李秀领, 韩雪蕾, 乔瑞敏, 李新建. 2022. 确山黑猪HOXA5基因组织表达及生物信息学分析[J]. 河南农业大学学报, 56(2):281-289.[Duan D D, Li C, Li M Y, Li X, Wang K J, Li X L, Han X L , Qiao R M, Li X J. 2022. Tissue expression and bioinformatics analysis of HOXA5 gene in Que' shan black pigs[J]. Journal of Henan Agricultural University, 56 (2):281-289.]doi: 10.16445/j.cnki.1000-2340.20220210.001. 贾义, 代杰, 张亮亮, 夏欢. 2019. 硒结合蛋白1的生物功能及其与疾病的关系[J]. 生物化学与生物物理进展, 46(2):128-137.[Jia Y, Dai J, Zhang L L, Xia H. 2019. Biological functions of selenium-binding protein 1 and its relationship with diseases[J]. Progress in Biochemistry and Biophysics, 46(2):128-137.]doi:10.16476/j.pibb.2018. 0239. 秦本源, 杨阳, 张燕伟, 刘敏, 张万峰, 王海珍, 吴怡琦, 张雪莲, 蔡春波, 高鹏飞, 郭晓红, 李步高, 曹果清. 2020. 猪骨骼肌卫星细胞分离培养、鉴定及其生物学特性[J]. 中国农业科学, 53(8):1664-1676.[Qin B Y, Yang Y, Zhang Y W, Liu M, Zhang W F, Wang H Z, Wu Y Q, Zhang X L , Cai C B, Gao P F, Guo X H, Li B G, Cao G Q. 2020.Isolation, culture, identification and biological characteristics of pig skeletal muscle satellite cells[J]. Scientia Agricultura Sinica, 53(8):1664-1676.]doi:10.3864/j.issn. 0578-1752.2020.08.015. 申露露. 2020. 猪肉质关键功能基因筛选及硒对关键基因表达的影响[D]. 贵阳:贵州大学.[Shen L L. 2020. Screening of pork key function genes and the effect of selenium on the expression of key genes[D]. Guiyang:Guizhou University.]doi: 10.27047/d.cnki.ggudu.2020.000679. 涂羽昂, 蔡沛燃, 余嘉懿, 罗云彦, 蒋钦杨, 黄艳娜. 2022. 陆川猪和杜长大猪Nrf2基因克隆及其在背最长肌中的表达分析[J]. 南方农业学报, 53(4):908-917.[Tu Y A, Cai P R , Yu J Y, Luo Y Y, Jiang Q Y, Huang Y N. 2022. Cloning and expression analysis of Nrf2 gene in longissimus dorsi of Luchuan pig and Duroc×Landrace×Yorkshire pig[J]. Journal of Southern Agriculture, 53(4):908-917.]doi: 10.3969/j.issn.2095-1191.2022.04.003. 肖明飞, 申露露, 何逸懿, 易宏波, 唐青松, 李莉, 洪兴, 李大江, 徐娥. 2022. 基于RNA-seq筛选影响猪肉品质的关键候选基因[J]. 中国畜牧杂志, 58(9):141-148.[Xiao M F, Shen L L, He Y Y, Yi H B, Tang Q S, Li L, Hong X, Li D J, Xu E. 2022. Screening key candidate genes affecting the meat quality of pork based on RNA-seq[J]. Chinese Journal of Animal Science, 58 (9):141-148.]doi: 10.19556/j.0258-7033.20210918-06. 熊讯, 李永, 阮涌, 陈晨, 宋林锦, 石鹏飞, 孙金魁, 许厚强. 2022. 猪FABP1和FABP2基因的分子特征及组织表达分析[J]. 南方农业学报, 53(4):935-945.[Xiong X, Li Y, Ruan Y, Chen C, Song L J, Shi P F, Sun J K, Xu H Q. 2022. Molecular characteristics and tissue expression analysis of FABP1 and FABP2 genes in pig[J]. Journal of Southern Agriculture, 53(4):935-945.]doi: 10.3969/j.issn.2095-1191.2022.04.006. 袁媛, 刘月光, 史新娥, 杨公社. 2010. 调控骨骼肌纤维类型转化的信号通路[J]. 中国生物化学与分子生物学报, 26(9):796-801.[Yuan Y, Liu Y G, Shi X E, Yang G S. 2010. Signaling pathways regulating skeletal muscle fiber-type transformation[J]. Chinese Journal of Biochemistry and Molecular Biology, 26(9):796-801.]doi:10. 13865/j.cnki.cjbmb.2010.09.003. 昝林森, 董梦宇, 王洪宝, 张乐. 2017. 成肌细胞融合相关机制的研究进展[J]. 家畜生态学报, 38(2):1-8.[Zan L S, Dong M Y, Wang H B, Zhang L. 2017. Research progress of the mechanism of myoblast fusion[J]. Acta Ecologae Animalis Domastici, 38(2):1-8.] doi: 10.3969/j.issn.1673-1182.2017.02.001. Bansal M P, Oborn C J, Danielson K G, Medina D. 1989. Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver[J]. Carcinogenesis, 10 (3):541-546. doi: 10.1093/carcin/10.3.541.
Chang P W G, Tsui S K W, Liew C C, Lee C Y, Waye M M Y, Fung K P. 1997. Isolation, characterization, and chromosomal mapping of a novel cDNA clone encoding human selenium binding protein[J]. Journal of Cellular Biochemistry, 64(2):217-224. doi:10.1002(/sici)1097-4644(199702) 64:2<217::aid-jcb5>3.0.co; 2-#.
Chen G A, Wang H, Miller C T, Thomas D G, Gharib T G, Misek D E, Giordano T J, Orringer M B, Hanash S M, Beer D G. 2004. Reduced selenium-binding protein 1 expression is associated with poor outcome in lung adenocarcinomas[J]. The Journal of Pathology, 202(3):321-329. doi: 10.1002/path.1524.
de Bruyns A, Geiling B, Dankort D. 2016. Construction of modular lentiviral vectors for effective gene expression and knockdown[J]. Methods in Molecular Biology, 1448:3-21. doi: 10.1007/978-1-4939-3753-0_1.
Elhodaky M, Diamond A M. 2018. Selenium-binding protein 1 in human health and disease[J]. International Journal of Molecular Sciences, 19(11):3437. doi:10.3390/ijms 19113437.
He Q Y, Cheung Y H, Leung S Y, Yuen S T, Chu K M, Chiu J F. 2004. Diverse proteomic alterations in gastric adenocarcinoma[J]. Proteomics, 4(10):3276-3287. doi:10. 1002/pmic.200300916.
Huang C, Ding G Y, Gu C Y, Zhou J, Kuang M, Ji Y, He Y F, Kondo T,Fan J. 2012. Decreased selenium-binding protein 1 enhances glutathione peroxidase 1 activity and downregulates HIF-1α to promote hepatocellular carcinoma invasiveness[J]. Clinical Cancer Research, 18(11):3042-3053. doi: 10.1158/1078-0432.CCR-12-0183.
Jeong J Y, Wang Y X, Sytkowski A J. 2009. Human selenium binding protein-1(hSP56)interacts with VDU1 in a selenium-dependent manner[J]. Biochemical and Biophysical Research Communications, 379(2):583-588. doi:10. 1016/j.bbrc.2008.12.110.
Kimura H. 2019. Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system[J]. Neurochemistry International, 126:118-125. doi: 10.1016/j.neuint.2019.01.027.
Li T H , Yang W C, Li M M, Byun D S, Tong C, Nasser S, Zhuang M, Arango D, Mariadason J M, Augenlicht L H. 2008. Expression of selenium-binding protein 1 characterizes intestinal cell maturation and predicts survival for patients with colorectal cancer[J]. Molecular Nutrition & Food Research, 52(11):1289-1299. doi:10.1002/mnfr. 200700331.
Philipp T M, Will A, Richter H, Winterhalter P R, Pohnert G, Steinbrenner H, Klotz L O. 2021. A coupled enzyme assay for detection of selenium-binding protein 1(SELENBP1)methanethiol oxidase(MTO)activity in mature enterocytes[J]. Redox Biology, 43:101972. doi: 10.1016/j.redox.2021.101972.
Pol A, Renkema G H, Tangerman A, Winkel E G, Engelke U F , de Brouwer A P M, Lloyd K C, Araiza R S, van den Heuvel L, Omran H, Olbrich H, Elberink M O, Gilissen C, Rodenburg R J, Sass J O, Schwab K O, Schäfer H, Venselaar H, Sequeira J S, den Camp H J M O, Wevers R A. 2018. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis[J]. Nature Genetics, 50(1):120-129. doi: 10.1038/s41588-017-0006-7.
Randi E B, Casili G, Jacquemai S, Szabo C. 2021. Seleniumbinding protein 1(SELENBP1) supports hydrogen sulfide biosynthesis and adipogenesis[J]. Antioxidants, 10(3):361. doi: 10.3390/antiox10030361.
Schott M, de Jel M M, Engelmann J C, Renner P, Geissler E K, Bosserhoff A K, Kuphal S. 2018. Selenium-binding protein 1 is down-regulated in malignant melanoma[J]. Oncotarget, 9(12):10445-10446. doi: 10.18632/oncotarget.23853.
Steinbrenner H,Micoogullari M,Hoang N A,Bergheim I, Klotz L O,Sies H. 2019. Selenium-binding protein 1(SELENBP1)is a marker of mature adipocytes[J]. Redox Biology, 20:489-495. doi: 10.1016/j.redox.2018.11.004.
Tsai C Y, Peh M T, Feng W, Dymock B W, Moore P K. 2017. Hydrogen sulfide promotes adipogenesis in 3T3L1 cells[J]. PLoS One, 10(3):e0119511. doi: 10.1371/journal.pone.0119511.
Wang Y L, Zhu W Z, Chen X Q, Wei G N, Jiang G S, Zhang G C. 2020. Selenium-binding protein 1 transcriptionally activates p21 expression via p53-independent mechanism and its frequent reduction associates with poor prognosis in bladder cancer[J]. Journal of Translational Medicine, 18 (1):17. doi: 10.1186/s12967-020-02211-4.
Ying Q, Ansong E, Diamond A M, Lu Z X, Yang W C, Bie X M. 2017. Quantitative proteomic analysis reveals that anticancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways[J]. PLoS One, 10 (5):e0126285. doi: 10.1371/journal.pone.0126285.
Zeng H,Zhao X B,Tang C F. 2021. Downregulation of SELENBP1 enhances oral squamous cell carcinoma chemoresistance through KEAP1-NRF2 signaling[J]. Cancer Chemotherapy and Pharmacology, 88(2):223-233.doi: 10.1007/s00280-021-04284-4.
Zhang X Y, Gao P T, Yang X, Cai J B, Ding G Y, Zhu X D, Ji Y, Shi G M, Shen Y H, Zhou J, Fan J, Sun H C, Yang L X, Huang C. 2018. Reduced selenium-binding protein 1 correlates with a poor prognosis in intrahepatic cholangiocarcinoma and promotes the cell epithelial-mesenchymal transition[J]. American Journal of Translational Research, 10 (11):3567-3578.
Zhao C H, Zeng H W, Wu T Y R, Cheng W H. 2017. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells[J]. PLoS One, 11(7):e0158650. doi:10.1371/journal.pone. 0158650.
Zhu R Q, Shevchenko O, Ma C, Maury S, Freitag M, Strauss S H. 2013. Poplars with a PtDDM1-RNAi transgene have reduced DNA methylation and show aberrant post-dormancy morphology[J]. Planta, 237(6):1483-1493. doi: 10.1007/s00425-013-1858-4.
-
期刊类型引用(6)
1. 李翔,胡德波,周应彪,鲁素君,杨静康,王灿,朱世银. 柑橘黄龙病研究进展. 农业开发与装备. 2024(04): 149-151 . 百度学术
2. 胡妍月,孙杨,邹志文,黄水金. 江西省柑橘木虱对五种常规药剂的抗药性. 应用昆虫学报. 2022(02): 419-425 . 百度学术
3. 赖红梅,唐传华. 柑桔黄龙病田间症状与防控. 世界热带农业信息. 2020(02): 16-17 . 百度学术
4. 黄岳锐,张建桃. 柑橘黄龙病不同防治对策的比较与思考. 现代农业. 2019(02): 81-82 . 百度学术
5. 张建桃,林耿纯,陈鸿,文晟,尹选春,邓小玲. 柑橘黄龙病远红外热处理温度场分布特性试验研究. 农业机械学报. 2019(10): 175-188 . 百度学术
6. 詹兴堆. 不同柑橘木虱种群对6种常用杀虫剂的抗药性测定. 南方农业学报. 2019(12): 2713-2719 . 本站查看
其他类型引用(9)
计量
- 文章访问数: 42
- HTML全文浏览量: 1
- PDF下载量: 8
- 被引次数: 15