Cloning, expression and trans-activation activity analysis of DcNAC1 gene from Dendrobium catenatum
-
摘要: 【目的】克隆铁皮石斛NAC转录因子基因(DcNAC1),并进行表达模式及转录自激活活性分析,为铁皮石斛抗逆相关基因鉴定及其分子机制研究提供参考。【方法】以铁皮石斛cDNA为模板,PCR扩增DcNAC1基因,运用生物信息学软件分析DcNAC1蛋白的理化性质、保守结构域、信号肽、跨膜结构域及亚细胞定位,通过实时荧光定量PCR检测DcNAC1基因在不同组织和不同逆境胁迫下的表达模式。同时构建该基因的酵母表达载体,分析其转录自激活活性。【结果】从铁皮石斛中PCR扩增获得DcNAC1基因的开放阅读框(ORF),全长为945 bp,与参考序列(LOC110104882)的核苷酸序列相似性为100%。该基因编码314个氨基酸残基,蛋白分子量为35.40 kD,理论等电点(pI)为8.16,为不稳定的亲水性蛋白,定位于细胞核,不含信号肽和跨膜结构域,含有特征性的NAC保守结构域。DcNAC1基因的启动子序列含茉莉酸甲酯响应元件(CGTCA-motif和TGACG-motif)、胁迫响应元件(TC-rich repeats)、光响应元件(G-box)、干旱诱导MYB结合位点(MBS)和低温响应元件(LTR)。根中DcNAC1基因的相对表达量在高温胁迫和低温胁迫处理6 h分别达最高,显著高于处理0 h(P<0.05,下同);茎中DcNAC1基因在盐胁迫处理48 h的相对表达量达最高,显著高于处理0 h。将构建的重组质粒pGBKT7-DcNAC1转化酵母菌株Y2HGold,结果发现该重组质粒无毒性,DcNAC1蛋白具有自激活活性。【结论】 DcNAC1基因表达受到茉莉酸、低温、干旱、光信号和逆境胁迫等多种信号的调控。DcNAC1蛋白具有自激活活性,通过激活下游基因的表达,参与到植物生长发育和逆境胁迫响应的转录调控过程中。Abstract: 【Objective】 This study was to dissect the expression pattern and trans-activation activity of the NAC gene (DcNAC1)of Dendrobium catenatum, thus providing a foundation for stress-related genes identification and elucidating the molecular mechanism of D. catenatum stress-resistance.【Method】 DcNAC1 gene was amplified by PCR using D. catenatum cDNA as template. The physical and chemical properties,conserved domain,signal peptide,transmembrane domain and subcellular location of DcNAC1 protein were analyzed by bioinformatics softwares. The expression patterns of DcNAC1 gene in different tissues and under different stresses were detected by real-time fluorescence quantitative PCR. At the same time,yeast expression vector of this gene was constructed and its transcriptional self-activation activity was analyzed.【Result】 The open reading frame(ORF)of DcNAC1 gene was obtained by PCR amplification from D. catenatum. The total length was 945 bp,and the nucleotide sequence similarity to the reference sequence(LOC110104882)was 100%. This gene encoded 314 amino acid residues,had a molecular weight of 35.40 kD and a theoretical isoelectric point (pI)of 8.16. It was an unstable hydrophilic protein,localized in the nucleus,free of signal peptides and transmembrane domains,and contained a characteristic NAC conserved domain. The promoter sequences of DcNAC1 gene included jalapic acid response elements(CGTCA-motif and TGACG-motif),stress response elements(TC-rich repeats),light response elements(G-box),drought-induced MYB binding sites(MBS)and low temperature response elements(LTR). The relative expression of DcNAC1 gene in root reached the highest level at 6 h under high temperature stress and low temperature stress,respectively,and was significantly higher than that at 0 h under high temperature stress(P<0.05,the same below). The relative expression of DcNAC1 gene in stems was the highest at 48 h after salt stress treatment,which was significantly higher than that at 0 h. The recombinant plasmid pGBKT7-DcNAC1 was transformed into yeast strain Y2HGold. The results showed that the recombinant plasmid was not toxic,but DcNAC1 protein had certain self-activation activity.【Conclusion】DcNAC1 gene expression is regulated by jasmonic acid,low temperature,drought,light signal and stress. DcNAC1 protein has self-activating activity,which is involved in transcriptional regulation of plant growth and development and response to stress by activating the expression of downstream genes.
-
-
从青, 倪晓祥, 程龙军. 2021. 异源表达EgrNAC1提高拟南芥抗寒性和对干旱、高盐的敏感性[J]. 核农学报, 35(3):567-575.[Cong Q, Ni X X, Cheng L J. 2021. Ectopic express of EgrNAC1 enhances cold tolerance and sensitivity to drought and salt in Arabidopsis thaliana[J]. Journal of Nuclear Agricultural Aciences, 35(3):567-575.]doi: 10.11869/j.issn.100-8551.2021.03.0567. 付亚娟, 陈霞婷, 乔洁, 王晶, 李文静, 侯晓强. 2020. 铁皮石斛亲环蛋白基因DoCyP的克隆及表达分析[J]. 园艺学报, 47(3):581-589.[Fu Y J, Chen X T, Qiao J, Wang J, Li W J, Hou X Q. 2020. Molecular cloning and expression characterization of Cyclophilin gene(DoCyP)in Dendrobium officinale[J]. Acta Horticulturae Sinica, 47(3):581-589.]doi: 10.16420/j.issn.0513-353x.2019-0357. 吉璐. 2013. 南荻抗逆相关NAC转录因子的克隆及功能鉴定[D]. 长沙:湖南农业大学.[Ji L. 2013. Cloning and function identification of stress resistance -related NAC transcription factors from Miscanthus lutarioriparius(Poaceae)[D]. Changsha:Hunan Agricultural University.] 李以格, 杨杭, 姜琪梦, 陈研硕, 王晓锋, 陈勇. 2019. 珍稀药用植物铁皮石斛的组学及功能基因研究进展[J]. 生命科学,31(9):959-967.[Li Y G, Yang H, Jiang M Q, Chen Y S, Wang X F, Chen Y. 2019. Investigation on omics and functional genes of Dendrobium officinale(Orchidaceae), a precious medicinal herb[J]. Bulletin of Life Sciences, 31 (9):959-967.]doi: 10.13376/j.cbls/2019118. 荣欢, 任师杰, 汪梓坪, 王飞, 周勇. 2020. 植物NAC转录因子的结构及功能研究进展[J]. 江苏农业科学, 48(18):44-53.[Rong H, Ren S J, Wang Z P, Wang F, Zhou Y. 2020. Research progress on structure and function of plant NAC transcription factors[J]. Jiangsu Agricultural Sciences, 48(18):44-53.]doi:10.15889/j.issn.1002-1302. 2020.18.008. 尚金梦, 王汝颖, 轩淑欣, 江丹, 费得清, 王彦华, 冯大领, 申书兴. 2021. 大白菜-结球甘蓝易位系外源NAC086基因的鉴定与表达分析[J]. 农业生物技术学报, 29(9):1678-1687.[Shang J M, Wang R Y, Xuan S X, Jiang D, Fei D Q, Wang Y H, Feng D L, Shen S X. 2021. Identification and expression analysis of foreign NAC086 gene in Chinese cabbage(Brassica campestris ssp. Pekinensis)-cabbage(B. oleracea var. Capitata) translocation line[J]. Journal of Agricultural Biotechnology, 29 (9):1678-1687.]doi: 10.3969/j.issn.1674-7968.2021.09.003. 田雪瑶, 周洁, 王保松, 何开跃, 何旭东. 2020. 柳树NAC基因的克隆与表达模式分析[J]. 南京林业大学学报(自然科学版), 44 (1):119-124.[Tian X Y, Zhou J, Wang B S, He K Y, He X D. 2020. Cloning and expression pattern analysis of NAC gene in Salix[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 44(1):119-124.]doi: 10.3969/j.issn.1000-2006.201905031. 王计平, 史华平, 毛雪, 李润植. 2006. 转录因子网络与植物对环境胁迫的响应[J]. 应用生态学报, 17(9):1740-1746.[Wang J P, Shi H P, Mao X, Li R Z. 2006. Transcription factors networks and their roles in plant responses to environmental stress[J]. Chinese Journal of Applied Ecology, 17 (9):1740-1746.] 颜静宛, 林智敏, 周淑芬, 陈子强. 2021. 水稻胚特异表达基因Os08PTS启动子的克隆及分析[J]. 福建农业科技, 52(3):6-10.[Yan J W, Lin Z M, Zhou S F, Chen Z Q. 2021. Cloning and analysis of the promoter of rice Embryo-specific expression gene Os08PTS[J]. Fujian Agricultural Science and Technology, 52 (3):6-10]. doi: 10.13651/j.cnki.fjnykj.2021.03.002. 杨豪男, 张帮磊, 张宁, 沈晓静, 盛军, 王宣军, 字成庭. 2020.铁皮石斛的化学组成及其活性研究概述[J]. 广东化工, 47(11):87-88.[Yang H N, Zhang B L, Zhang N, Shen X J, Sheng J, Wang X J, Zi C T. 2020. Study on chemical structure and biological activity of Dendrobium candidum[J]. Guangdong Chemical Industry, 47(11):87-88.]doi: 10.3969/j.issn.1007-1865.2020.11.035. 张婷婷, 罗琴, 傅思毅, 王健, 宋希强, 周扬. 2021. 铁皮石斛CIPK24与CBL1的互作及盐胁迫下的表达分析[J]. 分子植物育种, 19(16):5326-5334.[Zhang T T, Luo Q, Fu S Y, Wang J, Song X Q, Zhou Y. 2021. Protein interaction and gene expression analysis under salt stress of CIPK24 and CBL1 from Dendrobium catenatum[J]. Molecular Plant Breeding, 19(16):5326-5334.]doi:10.13271/j.mpb.019. 005326. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. 1997. Genes involved in organ separation in Arabidopsis:An analysis of the cup-shaped cotyledon mutant[J]. The Plant Cell, 9 (6):841-857. doi: 10.1105/tpc.9.6.841.
Baillo E H, Kimotho R N, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes(Basel), 10 (10):771. doi: 10.3390/genes10100771.
Bechtold U, Field B. 2018. Molecular mechaniss controlling plant growth during abiotic stress[J]. Journal of Experimental Botany, 69(11):2753-2758. doi: 10.1093/jxb/ery157.
Chen W J, Tong Z. 2004. Networks of transcription factors with roles in environmental stress response[J]. Trends in Plant Science, 9 (12):591-596. doi:10.1016/j.tplants.2004. 10.007.
Fang Y J, Liao K F, Du H, Xu Y, Song H Z, Li X H, Xiong L Z. 2015. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experimental Botany, 66 (21):6803-6817. doi: 10.1093/jxb/erv386.
Gao Y J, An K X, Guo W W, Chen Y M, Zhang R J, Zhang X, Chang S Y, Rossi V, Jin F M, Cao X Y, Xin M M, Peng H R, Hu Z R, Guo W L, Du J K, Ni Z F, Sun Q X, Yao Y Y. 2021. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality[J]. The Plant Cell, 33 (3):603-622. doi: 10.1093/plcell/koaa040.
Hao Y J, Sun J Y, Xu P, Zhang R, Li L G. 2014. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species[J]. Plant Physiology, 164(2):765-776. doi:10.1104/pp.113. 231134.
Hu H H, Dai M Q, Yao J L, Xiao B, Li X, Zhang Q, Xiong L. 2006. Overexpressing a NAM, ATAF, and CUC(NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,103(35):12987-12992. doi: 10.1073/pnas.0604882103.
Hu P, Zhang K M, Yang C P. 2019. BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis[J]. Plant Physiology, 179(2):700-717. doi:10. 1104/pp.18.01167.
Huang D B, Wang S G, Zhang B C, Shang-Guan K, Shi Y Y, Zhang D M, Liu X L, Wu K, Xu Z P, Fu X D, Zhou Y H. 2015. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice[J]. The Plant Cell, 27 (6):1681-1696. doi: 10.1105/tpc.15.00015.
Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M,Guo Z F. 2012. Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 39(2):969-978. doi: 10.1007/s11033-011-0823-1.
Hénanff G L, Profizi C, Courteaux B, Rabenoelina F, Gérard C, Clément C, Baillieul F, Cordelier S, Dhondt-Cordelier S. 2013. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance[J]. Journal of Experimental Botany, 64(16):4877-4893. doi: 10.1093/jxb/ert277.
Jensen M K, Hagedorn P H, de Torres-Zabala M, Grant M R, Rung J H, Collinge D B, Lyngkjaer M F. 2008. Transcriptional regulation by an NAC(NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis[J]. The Plant Journal, 56(6):867-880. doi: 10.1111/j.1365-313X.2008.03646.x.
Jiang H L, Li H M, Bu Q Y, Li C Y. 2009. The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response[J]. Plant Signaling Behavior, 4(5):464-466. doi:10. 1104/pp.109.135269.
Jin J P, Zhang H, Kong L, Gao G, Luo J C. 2014. PlantTFDB 3.0:A portal for the functional and evolutionary study of plant transcription factors[J]. Nucleic Acids Research, 42:D1182-D1189. doi: 10.1093/nar/gkt1016.
Mun B G, Lee S U, Park E J, Kim H H, Hussain A, Imran Q M, Lee I J, Yun B W. 2017. Analysis of transcription factors among differentially expressed genes induced by drought stress in Populus davidiana[J]. 3 Biotech, 7(3):209. doi: 10.1007/s13205-017-0858-7.
Ng T B, Liu J, Wong J H, Ye X, Wing S S C, Tong Y, Zhang K Y. 2012. Review of research on Dendrobium, a prized folk medicine[J]. Applied Microbiology and Biotechnology, 93 (5):1795-1803. doi: 10.1007/s00253-011-3829-7.
Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N. 2005. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice[J]. Genes and Genetic Systems, 80(2):135-139. doi: 10.1266/ggs.80.135.
Olsen A N, Ernst H A, Leggio L L, Skriver K. 2005. NAC transcription factors:Structurally distinct,functionally diverse[J]. Trends in Plant Science, 10 (2):79-87. doi:10. 1016/j.tplants.2004.
Pei H X, Ma N, Tian J, Luo J, Chen J, Li J W, Zheng Y, Chen X, Fei Z J, Gao J P. 2013. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals[J]. Plant Physiology, 163(2):775-791. doi:10.1104/pp. 113.223388.
Puranik S, Bahadur R P, Srivastava P S, Prasad M. 2011. Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet[Setaria italica(L.)P. Beauv] [J]. Molecular Biotechnology, 49 (2):138-150. doi: 10.1007/s12033-011-9385-7.
Singh K, Foley R C, Oñate-Sánchez L. 2002. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 5(5):430-436. doi:10.1016/s1369-5266 (02) 00289-3.
Singh S, Koyama H, Bhati K K, Alok A. 2021. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement[J]. Journal of Plant Research, 134 (3):475-495. doi: 10.1007/s10265-021-01270-y.
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. 1996. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 85 (2):159-170. doi:10.1016/s0092-8674 (00) 81093-4.
Sun J, Guo Y D, Fu X Q, Wang Y S, Liu Y, Huo B, Sheng J, Hu X. 2015. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers[J]. Onco Targets and Therapy, 9:21-30. doi: 10.2147/OTT.S93305.
Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K,Yamaguchi-Shinozaki K,Nakashima K. 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J]. Molecular Genetics and Genomics, 284 (3):173-183. doi: 10.1007/s00438-010-0557-0.
Tang H X, Zhao T W, Sheng Y J, Zheng T, Fu L, Zhang Y. 2017. Dendrobium officinale Kimura et Migo:A review on its ethnopharmacology,phytochemistry,pharmacology, and industrialization[J]. Evidence-based Complementary and Alternative Medicine, 2017:7436259. doi: 10.1155/2017/7436259.
Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, YamaguchiShinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell, 16 (9):2481-2498. doi: 10.1105/tpc.104.022699.
Xu Z Y, Gongbu Z X,Wang C Y, Xue F, Zhang H, Ji W G. 2015. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress[J]. Plant Physiology and Biochemistry, 96:356-363. doi:10.1016/j. plaphy. 2015. 08.013.
Xue G P, Way H M, Richardson T, Drenth J, Joyce P A, McIntyre C L. 2011. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat[J]. Molecular Plant, 4 (4):697-712. doi: 10.1093/mp/ssr013.
You J, Zong W, Li X K, Ning J, Hu H H, Li X H, Xiao J H, Xiong L Z. 2013. The SNAC1 -targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 64(2):569-583. doi: 10.1093/jxb/ers349.
Zhang H F, Ma F, Wang X K, Liu S Y, Saeed U H, Hou X M, Zhang Y M, Luo D, Meng Y C, Zhang W, Abid K, Chen R G. 2020. Molecular and functional characterization of CaNAC035,an NAC transcription factor from pepper(Capsicum annuum L.)[J]. Frontiers in Plant Science, 11:14. doi: 10.3389/fpls.2020.00014.
-
期刊类型引用(1)
1. 王晓菲,高利盈,刘宁,程钧,王伟,谭彬,郑先波,叶霞,冯建灿,张郎郎. 桃基因PpNAC的鉴定及其在不同发育时期的表达分析. 河南农业大学学报. 2024(03): 412-423 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 55
- HTML全文浏览量: 1
- PDF下载量: 16
- 被引次数: 2