烟秆生物炭还田对植烟黄棕壤养分、细菌群落结构与功能的影响

戴华鑫, 梁太波, 李彩斌, 罗贞宝, 关罗浩, 钟帅, 翟振, 边文杰, 黄卫, 张艳玲

戴华鑫, 梁太波, 李彩斌, 罗贞宝, 关罗浩, 钟帅, 翟振, 边文杰, 黄卫, 张艳玲. 2023: 烟秆生物炭还田对植烟黄棕壤养分、细菌群落结构与功能的影响. 南方农业学报, 54(2): 476-487. DOI: 10.3969/j.issn.2095-1191.2023.02.016
引用本文: 戴华鑫, 梁太波, 李彩斌, 罗贞宝, 关罗浩, 钟帅, 翟振, 边文杰, 黄卫, 张艳玲. 2023: 烟秆生物炭还田对植烟黄棕壤养分、细菌群落结构与功能的影响. 南方农业学报, 54(2): 476-487. DOI: 10.3969/j.issn.2095-1191.2023.02.016
DAI Hua-xin, LIANG Tai-bo, LI Cai-bin, LUO Zhen-bao, GUAN Luo-hao, ZHONG Shuai, ZHAI Zhen, BIAN Wen-jie, HUANG Wei, ZHANG Yan-ling. 2023: Effects of tobacco-stalk biochar returning on soil nutrients,the structure and functioning of bacterial communities in tobacco-planting yellow-brown fields. Journal of Southern Agriculture, 54(2): 476-487. DOI: 10.3969/j.issn.2095-1191.2023.02.016
Citation: DAI Hua-xin, LIANG Tai-bo, LI Cai-bin, LUO Zhen-bao, GUAN Luo-hao, ZHONG Shuai, ZHAI Zhen, BIAN Wen-jie, HUANG Wei, ZHANG Yan-ling. 2023: Effects of tobacco-stalk biochar returning on soil nutrients,the structure and functioning of bacterial communities in tobacco-planting yellow-brown fields. Journal of Southern Agriculture, 54(2): 476-487. DOI: 10.3969/j.issn.2095-1191.2023.02.016

烟秆生物炭还田对植烟黄棕壤养分、细菌群落结构与功能的影响

基金项目: 

中国烟草总公司科技重点项目(110201902004);广东中烟工业有限责任公司科研项目(QJ/GYG03.009/02);郑州烟草研究院青年托举项目(112020CR0250)

详细信息
    作者简介:

    戴华鑫(1983-),https://orcid.org/0000-0002-5989-9925,博士,高级工程师,主要从事烟叶质量与生态环境关系研究工作,E-mail:huaxindai@foxmail.com

    通讯作者:

    张艳玲(1972-),https://orcid.org/0000-0003-1951-0652,研究员,主要从事烟叶质量与生态环境关系研究工作,E-mail:zhangyanling@ztri.com.cn

  • 中图分类号: S572.01

Effects of tobacco-stalk biochar returning on soil nutrients,the structure and functioning of bacterial communities in tobacco-planting yellow-brown fields

Funds: 

Key Scientific and Technological Project of China National Tobacco Corporation(110201902004) ; Science and Technology Project of China Tobacco Guangdong Industrial Co.,Ltd.(QJ/GY G03.009/02); Youth Talent Support Project of Zhengzhou Tobacco Research Institute (112020CR0250)

  • 摘要: 【目的】明确烟秆生物炭对植烟黄棕壤养分、细菌群落结构与功能的影响,为提高烟秆的资源化利用提供理论依据。【方法】基于大田试验,比较不同用量烟秆生物炭(0、5、15、20和40 t/ha)施用4年后烟田土壤养分指标及细菌丰度变化;采用16S rDNA序列高通量测序技术和PICRUSt基因预测方法,分析耕层土壤细菌群落结构、多样性及代谢功能变化。【结果】随着生物炭施用量的增加,土壤pH、有机质、总氮、有效磷、速效钾含量及细菌丰度呈增加趋势。主坐标分析(PCoA)和聚类分析结果表明,施用生物炭改变了细菌群落组成。生物炭用量在15 t/ha时,土壤细菌OTU丰富度及Alpha多样性指数最高;在门水平上,变形菌门(Proteobacteria)、放线菌门(Actinobacteria)相对丰度较低,而芽单胞菌门(Gemmatimonadetes)、绿弯菌门(Chloroflexi)、浮霉菌门(Planctomycetes)和硝化螺旋菌门(Nitrospirae)相对丰度较高;在属水平上,芽单胞菌属(Gemmatimonas)、黄色土源菌属(Flavisolibacter)和Roseiflexus相对丰度较高。冗余分析(RDA)结果表明,生物炭用量与土壤拟杆菌门显著正相关(P<0.05,下同),与酸杆菌门显著负相关。PICRUSt功能预测表明,施用生物炭增加了与土壤碳代谢相关的细菌基因丰度。【结论】贵州植烟黄棕壤施用烟秆生物炭后,土壤养分、烤烟农艺性状和经济性状指标均有提升,土壤细菌群落丰富度及多样性显著提高,土壤细菌碳代谢能力增强,对改善烟田土壤微生态具有积极作用。以15 t/ha烟秆生物炭作用效果较好,可在生产上推广应用。
    Abstract: 【Objective】 In order to explore the effects of tobacco-stalk biochar(BC)on soil nutrients the structure and functioning of bacterial communities in tobacco-planting yellow-brown fields, and provide theoretical basis for the utilization of tobacco stalk.【Method】 A field experiment with different biochar dosages(0, 5, 15, 20, 40 t/ha)was set up to compare the changes of soil nutrient indexes and bacterial abundance of tobacco field after four years’application. The 16S rDNA high-throughput sequencing and PICRUSt gene prediction analysis were used to decipher soil community composition,diversity and metabolic function.【Result】The results showed that soil pH, organic matter, total nitrogen, available phosphorus, available potassium and the abundance of soil bacteria significantly increased with the dosage of biochar application. The results of principal coordinate analysis(PCoA)and cluster analysis show that soil bacterial community composition was significantly altered by the biochar application. When the amount of tobacco-stalk biochar was 15 t/ha, bacteria OTU richness and Alpha diversity indexes were higher than other treatments. At the phylum level, the relative abundance of Proteobacteria and Actinobacteria was lower under 15 t/ha than other treatments, but those of Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae were high. At the genus level, the relative abundance of Gemmatimonas, Flavisolibacter,Roseiflexus was higher under 15 t / ha than other treatments. Redundancy analysis(RDA) analysis showed that biochar application dosage was significantly positively correlated with the relative abundance of Bacteroidetes (P<0.05,the same below), while negatively correlated with Acidobacteria. PICRUSt functional prediction analysis suggested that biochar application increased the functional gene abundance related to soil carbon metabolism in bacterial community.【Conclusion】 After applying tobacco-stalk biochar to the yellow-brown tobacco-planting soil in Guizhou,soil nu-trients,agronomic and economic indicators of flue-cured tobacco are improved,and the richness and diversity of soil bacterial communities are significantly increased. The carbon metabolism ability of soil bacteria is enhanced,which has a positive effect on improving the soil microecology of tobacco fields. In sum,the effect of using 15 t/ha tobacco-stalk biochar isrelatively better and can be popularized in tobacco production.
  • 白珊, 倪幸, 杨瑗羽, 方先芝, 柳丹, 叶正钱. 2021. 不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J]. 江苏农业学报, 37(5):1199-1205.[Bai S, Ni X, Yang Y Y, Fang X Z, Liu D, Ye Z Q. 2021. Immobilization of soil cadmium and zinc by different raw material derived biochars[J].Jiangsu Journal of Agricultural Sciences, 37(5):1199-1205.]doi: 10.3969/j.issn.1000-4440.2021.05.015.
    陈懿, 陈伟, 高维常, 程建中, 林叶春, 潘文杰. 2017. 烟秆生物炭对烤烟根系生长的影响及其作用机理[J]. 烟草科技, 50(6):26-32.[Chen Y, Chen W, Gao W C, Cheng J Z,Lin Y C, Pan W J. 2017. Effects of tobacco stalk biochar on root growth of flue-cured tobacco and its action mechanism[J]. Tobacco Science & Technology, 50(6):26-32.]doi: 10.16135/j.issn1002-0861.2016.0268.
    戴华鑫, 陈丽燕, 陈彦春, 胡利伟, 王建伟, 梁太波, 张仕祥, 陈钊, 张艳玲, 尹启生. 2017. 豫中南烟区不同质地土壤理化性质、酶活性及微生物群落分析[J]. 烟草科技, 50(9):7-14.[Dai H X, Chen L Y, Chen Y C, Hu L W,Wang J W, Liang T B, Zhang S X, Chen Z, Zhang Y L,Yin Q S. 2017. Effects of soil texture on physicochemical properties, enzyme activities and microbial communities of soils in central and south Henan tobacco-planting areas[J]. Tobacco Science & Technology, 50(9):7-14.]doi: 10.16135/j.issn1002-0861.2017.0010.
    戴华鑫, 张艳玲, 段卫东, 陈小龙, 苏新宏, 任应斌, 刘文涛, 李亮, 毛家伟, 张翔. 2020. 豆浆灌根对烤烟生长及土壤细菌群落的影响[J]. 烟草科技, 53(4):1-10.[Dai H X,Zhang Y L, Duan W D, Chen X L, Su X H, Ren Y B,Liu W T, Li L, Mao J W, Zhang X. 2020. Effects of soybean milk root irrigation on growth of flue-cured tobacco and soil bacterial communities[J]. Tobacco Science & Technology, 53(4):1-10.]doi:10.16135/j.issn1002-0861. 2019.0463.
    邓建强, 谭军, 施河丽, 樊俊, 向必坤, 王瑞. 2018. 生物炭对土地整治区土壤微生物调控效应[J]. 中国烟草学报, 24(3):46-52.[Deng J Q, Tan J, Shi H L, Fan J, Xiang B K, Wang R. 2018. Control effect of biochar on soil microorganism in land consolidation region[J]. Acta Tabacaria Sinica, 24(3):46-52.]doi: 10.16472/j.chinatobacco.2017.291.
    桂意云, 李海碧, 韦金菊, 毛莲英, 张荣华, 区惠平, 祝开, 赵培方, 周会, 刘昔辉. 2022. 生物炭对旱坡地宿根甘蔗土壤养分、酶活性及微生物多样性的影响[J]. 南方农业学报, 53(3):776-784.[Gui Y Y, Li H B, Wei J J, Mao L Y, Zhang R H, Ou H P, Zhu K, Zhao P F, Zhou H, Liu X H. 2022. Effects of biochar on soil nutrients, enzyme activities and microbial diversity of ratoon sugarcane in dry slope land[J]. Journal of Southern Agriculture, 53(3):776-784.]doi: 10.3969/j.issn.2095-1191.2022.03.019.
    黄雁飞, 陈桂芬, 熊柳梅, 刘斌, 刘永贤, 黄玉溢, 唐其展. 2020. 不同秸秆生物炭对水稻生长及土壤养分的影响[J]. 南方农业学报, 51(9):2113-2119.[Huang Y F,Chen G F, Xiong L M, Liu B, Liu Y X, Huang Y Y, Tang Q Z. 2020. Effects of different straw biochars on rice growth and soil nutrients[J]. Journal of Southern Agriculture, 51(9):2113-2119.]doi:10.3969/j.issn.2095-1191. 2020.09.008.
    况帅, 段焰, 刘芮, 程昌新, 胡志明, 刘浩, 何晓健, 王松峰, 宋文静, 丛萍. 2021. 油菜秸秆生物炭对植烟红壤养分及细菌群落多样性的影响[J]. 中国烟草科学, 42(1):20-26.[Kuang S, Duan Y, Liu R, Cheng C X, Hu Z M, Liu H,He X J, Wang S F, Song W J, Cong P. 2021. Effects of straw biochar on soil nutrients and diversity of bacterial communities in tobacco-planting red soil[J]. Chinese Tobacco Science, 42(1):20-26.]doi: 10.13496/j.issn.1007-5119.2021.01.004.
    李彩斌, 张久权, 陈雪, 张继光, 翟欣, 凌爱芬. 2018. 生物炭施用对土壤健康的影响及其对烤烟生产的潜在风险[J].中国烟草科学, 39(6):91-97.[Li C B, Zhang J Q, Chen X, Zhang J G, Zhai X, Ling A F. 2018. Effect of biochar application on soil health and its potential risks to fluecured tobacco production[J]. Chinese Tobacco Science, 39(6):91-97.]doi: 10.13496/j.issn.1007-5119.2018.06.013.
    李青山, 王德权, 杜传印, 王毅, 高凯, 王刚, 王慎强. 2021. 有机无机肥与生物炭配施对烤烟生长发育和烟叶质量的影响[J]. 土壤通报, 52(6):1393-1401.[Li Q S, Wang D Q, Du C Y, Wang Y, Gao K, Wang G, Wang S Q. 2021.Effect of combined application of organic and inorganic fertilizers and biochar on the growth and development of flue-cured tobacco and leaf quality[J]. Chinese Journal of Soil Science, 52(6):1393-1401.]doi: 10.19336/j.cnki.trtb.2021012601.
    李松伟, 王发展, 陈彪, 谢俊明, 史久长. 2021. 生物炭配施海藻肥对连作植烟土壤理化特性及烤烟生长的影响[J].河南农业大学学报, 55(5):852-861.[Li S W, Wang F Z,Chen B,Xie J M,Shi J C. 2021. Effects of biochar combined with seaweed fertilizer on the physicochemical characteristics of continuous tobacco planting soil and flue-cured tobacco growth[J]. Journal of Henan Agricultural University,55(5):852-861.]doi:1016445/j.cnki. 1000-2340.20210804.001.
    李文豪. 2019. 烟草秸秆有机肥的研制与土壤改良应用[D].武汉:湖北大学.[Li W H. 2019. Development and application of organic tobacco straw fertilizer for soil improvement[D]. Wuhan:Hubei University.]doi: 10.27130/d.cnki.ghubu.2019.000468.
    鲁如坤. 2000. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社.[Lu R K. 2000. Analytical methods of soil agricultural chemistry[M]. Beijing:China Agricultural Science and Technology Press.]
    吕娜娜, 沈宗专, 王东升, 刘红军, 薛超, 李荣, 沈启荣. 2018.施用氨基酸有机肥对黄瓜产量及土壤生物学性状的影响[J]. 南京农业大学学报, 41(3):456-464.[Lü N N,Shen Z Z, Wang D S, Liu H J, Xue C, Li R, Shen Q R. 2018. Effects of amino acid organic fertilizer on cucumber yield and soil biological characters[J]. Journal of Nanjing Agricultural University,41(3):456-464.]doi: 10.7685/jnau.201709023.
    王光飞, 马艳, 郭德杰, 曹云, 罗德旭, 赵建锋, 孙玉东. 2017.不同用量秸秆生物炭对辣椒疫病防控效果及土壤性状的影响[J]. 土壤学报, 54(1):204-215[. Wang G F, Ma Y, Guo D J, Cao Y, Luo D X, Zhao J F, Sun Y D. 2017.Application-rate-dependent effects of straw biochar on control of phytophthora blight of chilli pepper and soil properties[J]. Acta Pedologica Sinica, 54(1):204-215.]doi: 10.11766/trxb20160414002
    王志丹, 代晓华, 刘吉利, 于祥, 吴娜. 2022. 生物炭对宁夏干旱地区玉米生长及产量的影响[J]. 甘肃农业大学学报, 57(1):74-82.[Wang Z D, Dai X H, Liu J L, Yu X, Wu N. 2022. Effect of biochar on growth and yield of maize in arid area of Ningxia[J]. Journal of Gansu Agricultural University, 57 (1):74-82.]doi:10.13432/j.cnki.jgsau.2022. 01.009.
    姚丽茹, 李伟, 朱员正, 普布仓决, 韩娟. 2022. 施用生物炭对麦田土壤细菌群落多样性和冬小麦生长的影响[J/OL]. 环境科学, https://kns.cnki.net/kcms/detail/11.1895.X.20220919. 1141.032.html.[Yao L R, Li W, Zhu Y Z, Pubu C J, Han J. 2022. Effects of biochar application on soil bacterial community diversity and winter wheat growth in wheat fields[J/OL]. Environmental Science, https://kns.cnki.net/kcms/detail/11.1895.X.20220919.1141.032.html.]doi: 10.13227/j.hjkx.202207125.
    叶协锋, 李志鹏, 于晓娜, 牛瑜德, 李先锋, 管赛赛, 宗胜杰, 孟琦. 2015. 生物炭用量对植烟土壤碳库及烤后烟叶质量的影响[J]. 中国烟草学报, 21(5):33-41.[Ye X F, Li Z P, Yu X N, Niu Y D, Li X F, Guan S S, Zong S J, Meng Q. 2015. Effect of biochar application rate on quality of flue-cured tobacco leaves and carbon pool in tobacco growing soil[J]. Acta Tabacaria Sinica,21(5):33-41.]doi: 10.16472/j.chinatobacco.2014.546.
    曾凤铃, 邹玉霞, 张卫华, 运剑苇, 张伟, 邵清清. 2022. 生物炭用量与粒径对紫色土水分入渗及再分布特征的影响[J].西南大学学报(自然科学版), 44(12):136-144.[Zeng F L, Zou Y X, Zhang W H, Yun J W, Zhang W, Shao Q Q. 2022. Effects of rateand particle size of biochar on water infiltration and redistribution characteristics of purple soil[J]. Journal of Southwest University(Natural Science Edition),44(12):136-144.]doi:10.13718/j.cnki.xdzk. 2022.12.014.
    张广雨, 胡志明, 褚德朋, 戴永平, 尹绍静, 严明雄, 段焰, 孙康, Naila Ilyas, 尤祥伟, 李义强. 2020. 生物炭对根际土壤微生态的调控及对烟草青枯病的防控作用[J]. 中国烟草学报, 26(6):81-88.[Zhang G Y, Hu Z M, Chu D P, Dai Y P, Yin S J, Yan M X, Duan Y, Sun K, Naila I,You X W, Li Y Q. 2020. Regulation of biochar on rhizosphere soil microecology and its control effect on tobacco bacterial wilt[J]. Acta Tabacaria Sinica,26(6):81-88.]doi: 10.16472/j.chinatobacco.2020.135.
    张贵云, 吕贝贝, 张丽萍, 刘珍, 范巧兰, 魏明峰, 姚众, 袁嘉玮, 柴跃进. 2019. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响[J]. 中国生态农业学报, 27(3):358-368.[Zhang G Y, Lü B B, Zhang L P, Liu Z, Fan Q L, Wei M F, Yao Z, Yuan J W, Chai Y J. 2019. Effect of long-term no-tillage with stubble on soil fertility and diversity of prokaryotic microbiome in dryland wheat soils on the Loess Plateau, China[J]. Chinese Journal of Eco-Agriculture, 27(3):358-368.]doi: 10.13930/j.cnki.cjea.180604.
    张珂珂, 宋晓, 郭斗斗, 黄绍敏, 岳克, 郭腾飞, 张水清, 岳艳军. 2022. 生物炭对潮土土壤肥力特征和氮肥利用效率的影响[J]. 河南农业科学, 51(12):73-80.[Zhang K K,Song X, Guo D D, Huang S M, Yue K, Guo T F, Zhang S Q, Yue Y J. 2022. Effects of biochar on fertility and nitrogen utilization efficiency in fluvo-aquic soil[J]. Journal of Henan Agricultural Sciences, 51(12):73-80.]doi: 10.15933/j.cnki.1004-3268.2022.12.009.
    张璐, 阎海涛, 任天宝, 李帅, 杨永锋, 彭桂新, 于建春, 刘国顺. 2019. 有机物料对植烟土壤养分、酶活性和微生物群落功能多样性的影响[J]. 中国烟草学报, 25(2):55-62.[Zhang L, Yan H T, Ren T B, Li S, Yang Y F, Peng G X,Yu J C, Liu G S. 2019. Effects of organic matter on nutrient, enzyme activity and functional diversity of microbial community in tobacco planting soil[J]. Acta Tabacaria Sinica, 25(2):55-62.]doi:10.16472/j.chinatobacco. 2018.195.

    Aciego Pietri J C, Brookes P C. 2008. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry, 40(7):1856-1861. doi: 10.1016/j.soilbio.2008.03.020.

    Blanco-Canqui H. 2017. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 81(4):687-711. doi: 10.2136/sssaj2017.01.0017.

    Chen J H, Li S H, Liang C F, Xu Q F, Li Y C, Qin H,Fuhrmann J J. 2017. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo(Phyllostachys praecox) plantation soil:Effect of particlesize and addition rate[J]. Science of the Total Environment, 574:24-33. doi: 10.1016/j.scitotenv.2016.08.190.

    Cox D E, Dyer S, Weir R, Cheseto X, Sturrock M, Coyne D,Torto B, Maule A G, Dalzell J J. 2019. ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbe-parasite interactions in the rhizosphere[J]. Scientific Reports, 9 (1):19899. doi: 10.1038/s41598-019-56493-w.

    Gao M L, Zhang Z, Dong Y M, Song Z G, Dai H X. 2020.Responses of bacterial communities in wheat rhizospheres in different soils to di-n-butyl and di(2-ethylhexyl) phthalate contamination[J]. Geoderma,362:114126. doi: 10.1016/j.geoderma.2019.114126.

    Gao M Y, Yang J F, Liu C M, Gu B W, Han M, Li J W, Li N, Liu N, An N, Dai J, Liu X H, Han X R. 2021. Effects of long-term biochar and biochar-based fertilizer application on brown earth soil bacterial communities[J]. Agriculture,Ecosystems & Environment,309:107285. doi: 10.1016/j.agee.2020.107285.

    Gong X P, Wang S H. 2022. New insights into evolution of the ABC transporter family in Mesostigma viride, a unicellular charophyte algae[J]. Current Issues in Molecular Biology, 44 (4):1646-1660. doi: 10.3390/cimb44040112.

    Jones D L, Rousk J, Edwards-Jones G, DeLuca T H, Murphy D V. 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and Biochemistry, 45:113-124. doi:10.1016/j.soilbio.2011. 10.012.

    Kalam S, Basu A, Ahmad I, Sayyed R Z, El-Enshasy H A,Dailin D J, Suriani N L. 2020. Recent understanding of soil acidobacteria and their ecological signi fi cance:A critical review[J]. Frontiers in Microbiology, 11:580024. doi:10. 3389/fmicb.2020.580024.

    Khurana P, Gokhale R S, Mohanty D. 2010. Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles[J]. BMC Bioinformatics, 11(1):57. doi: 10.1186/1471-2105-11-57.

    Kolton M, Harel Y M, Pasternak Z, Graber E R, Elad Y, Cytryn E. 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants[J]. Applied and Environmental Microbiology, 77 (14):4924-4930. doi: 10.1128/AEM.00148-11.

    Langille M G I, Zaneveld J, Caporaso J G, McDonald D,Knights D, Reyes J A, Clemente J C, Burkepile D E,Thurber R L V, Knight R, Beiko R G, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 31 (9):814-821. doi: 10.1038/nbt.2676.

    Larsbrink J, McKee L S. 2020. Bacteroidetes bacteria in the soil:Glycan acquisition,enzyme secretion,and gliding motility[J]. Advances in Applied Microbiology, 110:63-98. doi: 10.1016/bs.aambs.2019.11.001.

    LeBrun E S, Kang S. 2018. A comparison of computationally predicted functional metagenomes and microarray analysis for microbial P cycle genes in a unique basalt-soil forest[J]. F1000Research, 7:179. doi:10.12688/f1000research. 13841.1.

    Liao H K, Li Y Y, Yao H Y. 2019. Biochar amendment stimulates utilization of plant-derived carbon by soil bacteria in an intercropping system[J]. Frontiers in Microbiology, 10:1361. doi: 10.3389/fmicb.2019.01361.

    Liu W, Li Y L, Feng Y, Qiao J C, Zhao H W, Xie J X, Fang Y Y, Shen S G, Liang S X. 2020. The effectiveness of nanobiochar for reducing phytotoxicity and improving soil remediation in cadmium-contaminated soil[J]. Scientific Reports, 10 (1):858. doi: 10.1038/s41598-020-57954-3.

    Lladó S,López-Mondéjar R,Baldrian P. 2018. Drivers of microbial community structure in forest soils[J]. Applied Microbiology and Biotechnology,102(10):4331-4338.doi: 10.1007/s00253-018-8950-4.

    Luo X S, Fu X Q, Yang Y, Cai P, Peng S B, Chen W L,Huang Q Y. 2016. Microbial communities play important roles in modulating paddy soil fertility[J]. Scientific Reports, 6 (1):20326. doi: 10.1038/srep20326.

    Oni B A, Oziegbe O, Olawole O O. 2019. Significance of biochar application to the environment and economy[J]. Annals of Agricultural Sciences, 64 (2):222-236. doi: 10.1016/j.aoas.2019.12.006.

    Van Zwieten L, Kimber S, Morris S, Chan K Y, Downie A,Rust J, Joseph S, Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant Soil, 327:235-246. doi: 10.1007/s11104-009-0050-x.

    Wang C, Chen D, Shen J L, Yuan Q, Fan F L, Wei W X, Li Y,Wu J S. 2021. Biochar alters soil microbial communities and potential functions 3-4 years after amendment in a double rice cropping system[J]. Agriculture, Ecosystems & Environment, 311:107291. doi: 10.1016/j.agee.2020.107291.

    Wang H, Liu S R, Schindlbacher A, Wang J X, Yang Y J, Song Z C, You Y M, Shi Z M, Li Z Y, Chen L, Ming A G, Lu L H, Cai D X. 2019. Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest[J]. Soil Biology and Biochemistry, 133:155-164. doi: 10.1016/j.soilbio.2019.03.004.

    Wang L W, O' Connor D, Rinklebe J, Ok Y S, Tsang D C W,Shen Z T, Hou D Y. 2020. Biochar aging:Mechanisms,physicochemical changes,assessment,and implications for field applications[J]. Environmental Science & Technology, 54 (23):14797-14814. doi: 10.1021/acs.est.0c04033.

    Wilkinson H C, Dalby P A. 2019. Novel insights into transketolase activation by cofactor binding identifies two native species subpopulations[J]. Scientific Reports, 9 (1):16116.doi: 10.1038/s41598-019-52647-y.

    Wong J T F, Chen X W, Deng W J, Chai Y M, Ng C W W,Wong M H. 2019. Effects of biochar on bacterial communities in a newly established landfill cover topsoil[J].Journal of Environmental Management,236:667-673.doi: 10.1016/j.jenvman.2019.02.010.

    Zhang H J, Wang S J, Zhang J X, Tian C J, Luo S S. 2021.Biochar application enhances microbial interactions in mega-aggregates of farmland black soil[J]. Soil and Tillage Research, 213:105145. doi: 10.1016/j.still.2021.105145.

计量
  • 文章访问数:  72
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 网络出版日期:  2023-06-25

目录

    /

    返回文章
    返回