Bioinformatic analysis of Ci proteins of Apis mellifera
-
摘要: 【目的】掌握意大利蜜蜂转录因子(Ci)的生物信息学并阐述其功能,为揭示Ci蛋白在意大利蜜蜂Hh信号通路中的功能和作用打下基础。【方法】从NCBI获取意大利蜜蜂Ci蛋白氨基酸序列,分别使用ProtParam预测其理化性质、SignalP-5.0预测信号肽、TMHMM-2.0预测跨膜结构,通过NetOGlyc 3.0、NetNGlyc 1.0、NetPhos 3.1、SUMOplot等进行O-糖基化位点、N-糖基化位点、磷酸化位点及苏木化位点预测,采用GOR4、SWISS-MODEL、CD-Search等预测意大利蜜蜂Ci蛋白高级结构,在多重序列比对分析的基础上利用MEGA 11.0构建系统发育进化树,并通过String数据库预测相互作用蛋白。【结果】意大利蜜蜂Ci蛋白存在2个亚型,分别是XP_624136.4和XP_006558245.2。其中,XP_624136.4亚型的开放阅读(ORF)为4338 bp,编码1445个氨基酸残基,编码蛋白分子量为15.50 kD,理论等电点(pI)为8.39;XP_006558245.2亚型的ORF为3873 bp,编码1290个氨基酸残基,编码蛋白分子量13.99 kD,pI为8.48。2个亚型均属于不稳定的两性蛋白,无信号肽,无跨膜结构,主要定位于在细胞核,少数分布在囊细胞质,XP_006558245.2亚型在线粒体中也有少量分布。XP_624136.4亚型存在2个O-糖基化位点、9个N-糖基化位点、174个磷酸化位点及5个苏木素化位点;XP_006558245.2亚型存在26个O-糖基化位点、8个N-糖基化位点、156个磷酸化位点及5个苏木素化位点。意大利蜜蜂Ci蛋白二级结构主要有α-螺旋、延伸链和无规则卷曲,其三级结构中无规则卷曲、延伸链分布较多,α-螺旋分布较少;2个亚型均具有5个典型的C2H2型锌指蛋白结构域,且从昆虫到哺乳动物Ci蛋白序列高度保守。意大利蜜蜂Ci蛋白与Kinesin-B、Ptc、Poz、Su(fu)、Slmb、Smo、Csnk1a1、Cul-3和Fu等驱动蛋白样蛋白形成相互作用网络。【结论】意大利蜜蜂Ci蛋白属于不稳定的两性蛋白,主要定位于细胞核中,少量分布在囊细胞质或线粒体中,具有5个典型的C2H2型锌指蛋白结构域,蛋白序列高度保守,在意大利蜜蜂Hh信号通路中主要承担转录功能,对意大利蜜蜂的生长发育、跨膜运输、突触传递、信号转导及蛋白生成等起重要调控作用。Abstract: 【Objective】To apprehend bioinformatics of transcription factor Apis mellifera(Ci) and elucidate its functions,and to lay a foundation for exploring functions and roles of Ci proteins in Hh signaling pathway of A. mellifera.【Method】Ci protein amino acid sequences of A. mellifera were obtained from NCBI,and their physicochemical properties were predicted using ProtParam,predicting signal peptides by SignalP-5.0,transmembrane structures by TMHMM-2.0,O-glycosylation sites by NetOGlyc 3.0,N-glycosylation sites by NetNGlyc 1.0,phosphorylation sites by NetPhos 3.1,sumoylation sites by SUMOplot and tertiary structure of Ci proteins in A. mellifera by GOR4,SWISS-MODEL,CDSearch. Based on multiple sequence alignment,phylogenetic trees were constructed by MEGA 11.0 and interacting proteins were predicted by String database.【Result】Ci proteins in A. mellifera had two subtypes,XP_624136.4 and XP_006558245.2. XP_624136.4 contained open reading frames(ORF) of 4338 bp,encoding 1445 amino acid residues,encoding protein molecular mass of 15.50 kD and a theoretical isoelectric point(pI) of 8.39;XP_006558245.2 contained ORF of 3873 bp,encoding 1290 amino acid residues,encoding protein molecular mass of 13.99 kD and a pI of 8.48. Both were unstable amphiphilic proteins with no signal peptide or transmembrane structure,and they localized mainly in nucleus and a few of them in the vesicle cytoplasm. A few of XP_006558245.2 localized in mitochondria. XP_624136.4 had 2O-glycosylation sites,9 N-glycosylation sites,174 phosphorylation sites and 5 hematoxylation sites;XP_006558245.2had 26 O-glycosylation sites,8 N-glycosylation sites,156 phosphorylation sites and 5 hematoxylation sites. In secondary structures of Ci proteins A. mellifera were mainly α-helix,folded extended chains and irregular curls;in tertiary structures of the protein were mainly irregular curls and extended chains and a few α-helix;both subtypes had 5 typical C2H2-type zinc finger protein structural domains with highly conserved Ci protein sequences from insects to mammals. Ci proteins in A. mellifera and kinesin-like proteins such as Kinesin-B,Ptc,Poz,Su(fu),Slmb,Smo,Csnk1a1,Cul-3 and Fu proteins formed an interaction network.【Conclusion】Ci proteins in A. mellifera are unstable amphiphilic proteins,mainly localize in the nucleus,and a few distribute in vesicle cytoplasm or mitochondria. The proteins have 5 typical C2H2-type zinc finger protein structural domains and highly conserved protein sequences,which mainly work for transcription in Hh signaling pathway of A. mellifera,probably play an important role in regulation of A. mellifera growth and development,transmembrane transport,synaptic transmission,signal transduction and protein production.
-
Keywords:
- Apis mellifera /
- Ci protein /
- Hh signaling pathway /
- structure /
- function /
- bioinformatics
-
-
罗钧文.2022.蛋白质三级结构嵌入编码及其在蛋白质工程中的应用研究[D].广州:华南理工大学.[Luo J W.2022.Research on embedding of protein tertiary structure and its application in protein engineering[D].Guangzhou:South China University of Technology.]doi: 10.27151/d.cnki.ghnlu.2021.003154. 王露林,张硕杰,唐文如,旦菊花.2021.Hedgehog信号通路的作用机制及研究进展[J].中国细胞生物学学报,43(1):83-92.[Wang L L,Zhang S J,Tang W R,Dan J H.2021.Mechanism and research progress of hedgehog signal pathway[J].Chinese Journal of Cell Biology,43(1):83-92.]doi: 10.11844/cjcb.2021.01.0011. 张燕.2014.Hedgehog信号通路中Suppressor of Fused与Gli/Ci蛋白复合物的结构与功能研究[D].上海:上海交通大学.[Zhang Y.2014.Structure and function of suppressor of fused and Gli/Ci protein complex in the Hedgehog signaling pathway[D].Shanghai:Shanghai Jiao Tong University.] 周紫章.2015.Usp7/HAUSP通过去泛素化Ci/Gli调控Hh信号通路[D].南京:南京大学.[Zhou Z Z.2015.Deubiquitination of Ci/Gli by Usp7/HAUSP regulates Hedgehog signaling[D].Nanjing:Nanjing University.]doi: 10.1016/j.devcel.2015.05.016. Angelats C,Gallet A,Thérond P,Fasano L,Kerridge S.2002.Cubitus interruptus acts to specify naked cuticle in the trunk of Drosophila embryos[J].Developmental Biology,241(1):132-44.doi: 10.1006/dbio.2001.0498.
Chen Y,Goodman R H,Smolik S M.2000.Cubitus interruptus requires Drosophila CREB-binding protein to activate wingless expression in the Drosophila embryo[J].Molecular and Cellular Biology,20(5):1616-25.doi: 10.1128/MCB.20.5.1616-1625.2000.
Cohen M M.2003.The Hedgehog signaling network[J].American Journal of Medical Genetics.Part A,123(1):5-28.doi: 10.1002/ajmg.a.20495.
Cohen P.2002.The origins of protein phosphorylation[J].Nature Cell Biology,4(5):E127-E130.doi: 10.1038/ncb0502-e127.
Eichler J.2019.Protein glycosylation[J].Current Biology,29(7):R229-R231.doi: 10.1016/j.cub.2019.01.003.
Flotho A,Melchior F.2013.Sumoylation:A regulatory protein modification in health and disease[J].Annual Review of Biochemistry,82:357-385.doi: 10.1146/annurev-biochem-061909-093311.
Gareau J R,Lima C D.2010.The SUMO pathway:Emerging mechanisms that shape specificity,conjugation and recognition[J].Nature Reviews Molecular Cell Biology,11(12):861-871.doi: 10.1038/nrm3011.
Han Y H,Wang B,Cho Y S,Zhu J,Wu J,Chen Y B,Jiang J.2019.Phosphorylation of Ci/Gli by fused family kinases promotes Hedgehog signaling[J].Developmental Cell,50(5):610-626.doi: 10.1016/j.devcel.2019.06.008.
Huangfu D,Anderson K V.2006.Signaling from Smo to Ci/Gli:Conservation and divergence of Hedgehog pathways from Drosophila to vertebrates[J].Development,133(1):3-14.doi: 10.1242/dev.02169.
Jiang J,Hui C C.2008.Hedgehog signaling in development and cancer[J].Developmental Cell,15(6):801-812.doi: 10.1016/j.devcel.2008.11.010.
Jiang J.2022.Hedgehog signaling mechanism and role in cancer[J].Seminars in Cancer Biology,85:107-122.doi: 10.1016/j.semcancer.2021.04.003.
Kalderon D.2004.Hedgehog signaling:Costal-2 bridges the transduction gap[J].Current Biology,14(2):R67-R69.doi: 10.1016/j.cub.2003.12.047.
Koh V,Chakrabarti J,Torvund M,Steele N,Hawkins J A,Ito Y,Wang J,Helmrath M A,Merchant J L,Ahmed S A,Shabbir A,So J B Y,Yong W P,Zavros Y.2021.Hedgehog transcriptional effector GLI mediates mTOR-induced PD-L1 expression in gastric cancer organoids[J].Cancer Letters,518:59-71.doi: 10.1016/j.canlet.2021.06.007.
Kotani T.2012.Protein kinase A activity and Hedgehog signaling pathway[J].Vitamins&Hormones,88:273-291.doi: 10.1016/B978-0-12-394622-5.00012-2.
Lee C R,Park Y H,Min H,Kim Y R,Seok Y J.2019.Determination of protein phosphorylation by polyacrylamide gel electrophoresis[J].Journal of Microbiology,57(2):93-100.doi: 10.1007/s12275-019-9021-y.
Little J C,Garcia-Garcia E,Sul A,Kalderon D.2020.Drosophila hedgehog can act as a morphogen in the absence of regulated Ci processing[J].eLife,9:e61083.doi: 10.7554/eLife.61083.
Liu A M.2019.Proteostasis in the Hedgehog signaling pathway[J].Seminars in Cell&Developmental Biology,93:153-163.doi: 10.1016/j.semcdb.2018.10.009.
Lum L,Beachy P A.2004.The Hedgehog response network:Sensors,switches,and routers[J].Science,304(5678):1755-1759.doi: 10.1126/science.1098020.
00005-5.
Oh S,Kato M,Zhang C,Guo Y R,Beachy P A.2015.A Comparison of Ci/Gli activity as regulated by Sufu in Drosophila and mammalian Hedgehog response[J].PLoS One,10(8):e0135804.doi: 10.1371/journal.pone.0135804.
Pan C Y,Xiong Y,Lv X D,Xia Y X,Zhang S,Chen H,Fan J L,Wu W Q,Liu F,Wu H L,Zhou Z C,Zhang L,Zhao Y.2017.UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing[J].EMBOReports,18(11):1922-1934.doi: 10.15252/embr.201643289.
Robbins D J,Fei D L,Riobo N A.2012.The Hedgehog signal transduction network[J].Science Signaling,5(246):re6.doi: 10.1126/scisignal.2002906.
Shi Q,Li S,Li S X,Jiang A L,Chen Y B,Jiang J.2014.Hedgehog-induced phosphorylation by CK1 sustains the activity of Ci/Gli activator[J].Proceedings of the National Academy of Sciences of the United States of America,111(52):E5651-E5660.doi: 10.1073/pnas.1416652111.
Smelkinson M G,Kalderon D.2006.Processing of the Drosophila Hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb[J].Current Biology,16(1):110-6.doi: 10.1016/j.cub.2005.12.012.
Wang Q T,Holmgren R A.2000.Nuclear import of cubitus interruptus is regulated by Hedgehog via a mechanism distinct from Ci stabilization and Ci activation[J].Development,127(14):3131-3139.doi: 10.1242/dev.127.14.3131.
Xiong Y,Liu C Y,Zhao Y.2015.Decoding Ci:From partial degradation to inhibition[J].Development,Growth&Differentiation,57(2):98-108.doi: 10.1111/dgd.12187.
Zhou Q H,Kalderon D.2010.Costal 2 interactions with cubitus interruptus(Ci) underlying Hedgehog-regulated Ci processing[J].Developmental Biology,348(1):47-57.doi: 10.1016/j.ydbio.2010.09.004.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 59
- HTML全文浏览量: 3
- PDF下载量: 6
- 被引次数: 1