Physiological response of 5 ginger varieties to waterlogging stress and evaluation of their waterlogging tolerance
-
摘要: 【目的】探究淹水胁迫对生姜苗期形态变化及生理指标的影响,筛选耐涝种质资源,为生姜耐涝机理研究及抗涝品种选育提供参考。【方法】以生姜主产区的5个主栽品种山东大姜、罗平小黄姜、竹根姜、贵州小黄姜、凤头姜为试验材料,设置正常水分处理(CK)和淹水处理(TR),测定不同处理条件下的生长指标、生理指标及叶绿素荧光参数,利用隶属函数法对5个品种苗期的耐涝性进行综合评价。【结果】与CK相比,淹水胁迫下各生姜品种的株高、茎粗和根系活力均下降;生姜叶片的MDA和H2O2含量均显著上升(P<0.05,下同), SOD和POD活性在竹根姜中呈下降趋势,在其他4个品种中均呈上升趋势, CAT活性在山东大姜中呈上升趋势,在其他4个品种中均呈下降趋势, PAL活性在竹根姜和凤头姜中呈下降趋势,在其他3个品种中均呈上升趋势。淹水后5个品种的PSII最大光化学效率 (Fv/Fm)和光化学淬灭系数(qP)显著降低,非光化学淬灭系数(NPQ)显著升高。综合评价结果表明, 5个品种生姜的耐涝性排序依次为山东大姜>贵州小黄姜>罗平小黄姜>凤头姜>竹根姜。相关分析结果显示,株高与综合评价值 (D值)呈极显著正相关(P<0.01,下同),茎粗与D值呈显著正相关,叶片MDA含量与D值呈极显著负相关。【结论】生姜通过维持较高的根系活力,提高自身抗氧化能力来抵御氧化损伤。5个品种中山东大姜耐涝性最强,竹根姜耐涝性最差。株高、茎粗和叶片MDA含量可作为生姜耐涝品种筛选的主要参考指标。Abstract: 【Objective】 The effects of waterlogging stress on morphological changes and physiological indexes of ginger at seedling stage were investigated to provide a reference for the study of the waterlogging-tolerant mechanism and selection of waterlogging-tolerant ginger varieties.【Method】 Five main varieties in the main ginger producing areas were selected as experimental materials,including Shandong big ginger,Luoping small ginger,Guizhou small ginger,Zhugen ginger and Fengtou ginger,which were subjected to normal water treatment(CK)and flooding treatment(TR).The growth indexes,physiological indexes and chlorophyll fluorescence parameters under different treatment conditions were measured,and the waterlogging tolerance of the 5 varieties at the seedling stage was comprehensively evaluated using the method of membership function.【Result】 Compared with CK,the plant height,stem diameter and root activity of all varieties decreased under waterlogging stress,with significant increases(P<0.05,the same below)of MDA and H2O2 in leaves.The activity of SOD and POD decreased in Zhugen ginger but increased in the other 4 varieties.The CAT activity exhibited an increasing trend in Shandong big ginger but a decreasing trend in the other 4 varieties.The PAL activity decreased in Zhugen ginger and Fengtou ginger,but increased in the other 3 varieties.After the flooding treatment,the 5 varieties displayed significantly decreased maximum photochemical efficiency(Fv/Fm)and photochemical quenching coefficient(qP)of Photosystem II(PSII),and significantly increased non-photochemical quenching coefficient(NPQ).It was found that Shandong big ginger exhibited the best waterlogging tolerance,followed by the Guizhou small ginger,Luoping small ginger,Fengtou ginger and Zhugen ginger varieties.Moreover,it was noted that plant height and stem thickness were positively correlated with comprehensive evaluation value(D value)(P<0.01,the same below),while leaf MDA content was negatively correlated with D value.【Conclusion】Ginger resists oxidative damage by maintaining high root activity and improving its antioxidant capacity.Of the five varieties,Shandong big ginger exhibits the strongest waterlogging tolerance and Zhugen ginger shows the least waterlogging tolerance.Plant height,stem diameter and MDA content in leaves can be adopted as main reference indexes for screening waterlogging tolerant ginger varieties.
-
Keywords:
- ginger /
- waterlogging stress /
- psychological response /
- waterlogging evaluation
-
-
白丹凤,李志,齐秀娟,陈锦永,顾红,黄武权,任建杰,钟云鹏,方金豹. 2019. 4种基因型猕猴桃对淹水胁迫的生理响应及耐涝性评价[J].果树学报, 36(2):163-173.[Bai D F, Li Z, Qi X J, Chen J Y, Gu H, Huang W Q, Ren J J,Zhong Y P, Fang J B. 2019. Physiological responses and tolerance evaluation of four species of Actinidia to waterlogging stress[J]. Journal of Fruit Science, 36(2):163-173.]doi: 10.13925/j.cnki.gsxb.20180304. 曹隽隽,周勇,吴宜进,胡海,叶青清,吴文斌. 2013.江汉平原土地利用演变对区域径流量影响[J].长江流域资源与环境, 22(5):610-617.[Cao J J, Zhou Y, Wu Y J, Hu H,Ye Q Q, Wu W B. 2013. Effect of land-use changes of the Jianghan plain on the regional runoff[J]. Resources and Environment in the Yangtze Basin, 22(5):610-617.] 陈娟,梁明霞,潘开文. 2015.涝渍胁迫下生姜幼苗生长及体内保护酶活性变化[J].江苏农业科学, 43(5):152-155.[Chen J, Liang M X, Pan K W. 2015. Changes in growth and protective enzyme activities of ginger seedlings under waterlogging stress[J]. Jiangsu Agricultural Sciences, 43(5):152-155.]doi:10.15889/j.issn.1002-1302.2015.05. 051. 陈艳,杜红霞. 2018.生姜营养价值及加工应用研究进展[J].中国果菜, 38(12):36-38.[Chen Y, Du H X. 2018. Research progress on nutritional value and processing application of ginger[J]. China Fruit&Vegetable, 38(12):36-38.]doi: 10.19590/j.cnki.1008-1038.2018.12.009. 丁慧芳,杨文莉,代红军,王振平. 2020.淹水对'美乐'葡萄光合作用及根系生理特性的影响[J].中外葡萄与葡萄酒,(2):9-14.[Ding H F, Yang W L, Dai H J, Wang Z P. 2020. Effects of flooding stress on photosynthesis and root physiological characteristics of'Merlot'grapevine[J]. Sino-Overseas Grapevine&Wine,(2):9-14.]doi: 10.13414/j.cnki.zwpp.2020.02.002. 高俊凤. 2006.植物生理学实验指导[M].北京:高等教育出版社.[Gao J F. 2006. Experimental guidance on plant physiology[M]. Beijing:Higher Education Press.] 高雪,朱林,苏莹. 2018.基于隶属函数法的甜高粱孕穗期耐盐性综合评价[J].南方农业学报, 49(9):1736-1744.[Gao X, Zhu L, Su Y. 2018. Comprehensive evaluation on salt tolerance of Sorghum bicolor at booting stage by membership function method[J]. Journal of Southern Agriculture, 49(9):1736-1744.]doi: 10.3969/j.issn.2095-1191.2018.09.08. 郭欣欣,朱玉英,侯瑞贤,李晓锋,朱红芳,侯喜林. 2015.淹水胁迫对不结球白菜幼苗光合特性的影响[J].植物科学学报, 33(2):210-217.[Guo X X, Zhu Y Y, Hou R X, Li X F, Zhu H F, Hou X L. 2015. Effects of waterlogging stress on photosynthetic characteristics of Pak-Choi[J].Plant Science Journal, 33(2):210-217.]doi: 10.11913/PSJ.2095-0837.2015.20210. 李策明. 2005.姜瘟病发生原因及其防治策略[J].中国农技推广,(2):45-46.[Li C M. 2005. Causes and control strategies of ginger blast[J]. China Agricultural Technology Extension,(2):45-46.]doi:10.3969/j.issn.1002-381X. 2005.02.029. 刘晓慧,伍海兵,张圣美,尚静,张爱冬,朱宗文,田守波,吴雪霞. 2020.淹水胁迫对丝瓜幼苗生长及呼吸酶活性的影响[J].江西农业学报, 32(3):48-54.[Liu X H, Wu H B,Zhang S M, Shang J, Zhang A D, Zhu Z W, Tian S B,Wu X X. 2020. Effects of waterlogging stress on growth and respiratory enzyme activities of luffa seedlings[J].Acta Agriculturae Jiangxi, 32(3):48-54.]doi: 10.19386/j.cnki.jxnyxb.2020.03.09. 马瑞娟,张斌斌,蔡志翔,沈志军,俞明亮. 2013.不同桃砧木品种对淹水的光合响应及其耐涝性评价[J].园艺学报, 40(3):409-416.[Ma R J, Zhang B B, Cai Z X, Shen Z J, Yu M L. 2013. Evaluation of peach rootstock waterlogging tolerance based on the responses of the photosynthetic indexes to continuous submergence stress[J]. Acta Horticulturae Sinica, 40(3):409-416.]doi: 10.16420/j.issn.0513-353x.2013.03.002. 齐琳,马娜,吴雯雯,安玉艳,徐君成,秦祥宏,汪良驹. 2015.无花果品种幼苗淹水胁迫的生理响应与耐涝性评估[J].园艺学报, 42(7):1273-1284.[Qi L, Ma N, Wu W W,An Y Y, Xu J C, Qin X H, Wang L J. 2015. Physiological responses and tolerance evaluation of fig cultivars to waterlogging[J]. Acta Horticulturae Sinica, 42(7):1273-1284.]doi: 10.16420/j.issn.0513-353x.2015-0086. 任保兰,耿建建,吕亚,原慧芳,郑诚,杨焱. 2021.辣木幼苗对淹水胁迫的生理响应及耐涝性综合评价[J].南方农业学报, 52(3):789-796.[Ren B L, Gen J J, Lü Y, Yuan H F,Zheng C,Yang Y. 2021. Physiological response and tolerance evaluation to waterlogging in moringa at seedling stage[J]. Journal of Southern Agriculture, 52(3):789-796.]doi:10.3969/j.issn.2095-1191.2021.03. 027. 童梦莹,黄家权,李长江. 2019.淹水胁迫对樱桃番茄苗期形态特征及叶绿素荧光特性的影响[J].灌溉排水学报, 38(11):8-15.[Tong M Y, Huang J Q, Li C J. 2019. Effects of waterlogging on morphology and chlorophyll fluorescence characteristics of cherry tomato at seedling stage[J]. Journal of Irrigation and Drainage, 38(11):8-15.]doi: 10.13522/j.cnki.ggps.20190168. 王琼,张春雷,李光明,李玲. 2012.渍水胁迫对油菜根系形态与生理活性的影响[J].中国油料作物学报, 34(2):157-162.[Wang Q, Zhang C L, Li G M, Li L. 2012. Influences of waterlogging stress on roots morphology for rapeseed[J]. Chinese Journal of Oil Crop Sciences, 34(2):157-162.] 吴启侠. 2016.涝渍胁迫下麦棉的高光谱特征、生长代谢及排水指标研究[D].荆州:长江大学.[Wu Q X. 2016. Hyperspectral features and growth metabolism of winter/cotton in response to waterlogging stress and drainage index[D]. Jingzhou:Yangtze University.] 张洁. 2019.景天属植物对水涝胁迫的响应机理研究[D].北京:北京林业大学.[Zhang J. 2019. Response mechanisms of Sedum spp. to waterlogging stress[D]. Beijing:Beijing Forestry University.]doi:10.26949/d.cnki.gblyu. 2019.000130. 郑佳秋,郭军,梅燚,吴永成,祖艳侠,王薇薇. 2016.辣椒幼苗形态及生理特性对涝害胁迫的响应[J].西南农业学报, 29(3):536-540.[Zheng J Q, Guo J, Mei Y, Wu Y C, Zu Y X,Wang W W. 2016. Response of morphology and physiological characteristics of hot pepper seedling to waterlogging sterss[J]. Southwest China Journal of Agricultural Sciences, 29(3):536-540.]doi: 10.16213/j.cnki.scjas.2016.03.013. 周广生,梅方竹,周竹青,朱旭彤. 2003.小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学, 36(11):1378-1382.[Zhou G S, Mei F Z, Zhou Z Q, Zhu X T. 2003. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties[J]. Scientia Agricultura Sinica, 36(11):1378-1382.]doi: 10.3321/j.issn:0578-1752.2003.11.026. 朱向涛,金松恒,哀建国,蒋海凌,王翔. 2017.牡丹不同品种耐涝性综合评价[J].核农学报, 31(3):607-613.[Zhu X T, Jin S H, Ai J G, Jiang H L, Wang X. 2017. Evaluation of waterlogging tolerance of peony variety[J]. Journal of Nuclear Agricultural Sciences, 31(3):607-613.]doi:10. 11869/j.issn.100-8551.2017.03.0607. Guidi L, Lo Piccolo E, Landi M. 2019. Chlorophyll fluorescence,photoinhibition and abiotic stress:Does it make any difference the fact to be a C3 or C4 species?[J]. Frontiers in Plant Science, 10:174. doi:10.3389/fpls.2019.001 74.
Kuai J, Zhou Z G, Wang Y H, Meng Y L, Chen B L, Zhao W Q. 2015. The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position[J]. European Journal of Agronomy, 67:61-74. doi: 10.1016/j.eja.2015.03.005.
Phukan U J, Mishra S, Timbre K, Luqman S, Shukla R K. 2014. Mentha arvensis exhibit better adaptive characters in contrast to Mentha piperita when subjugated to sustained waterlogging stress[J]. Protoplasma, 251:603-614.doi: 10.1007/s00709-013-0561-4.
Repo T, Launiainen S, Lehto T, Sutinen S, Ruhanen H, Heiskanen J, Laurén A, Silvennoinen R, Vapaavuori E, Finér L. 2016. The responses of Scots pine seedlings to waterlogging during growing season[J]. Canadian Journal of Forest Research, 46(12):1439-1450. doi: 10.1139/cjfr-2015-0447.
Song M L, Li X Z, Saikkonen K, Li C J, Nan Z B. 2015. An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum[J]. Fungal Ecology, 13:44-52. doi: 10.1016/j.funeco.2014.07.004.
Suzuki N, Koussevitzky S, Mittler R, Miller G. 2012. ROS and redox signaling in the response of plants to abiotic stress[J]. Plant, Cell and Environment, 35(2):259-270.doi: 10.1111/j.1365-3040.2011.02336.x.
Tschiersch H, Junker A, Meyer R C, Altmann T. 2017. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses[J]. Plant Methods, 13:54. doi: 10.1186/s13007-017-0204-4.
Yin J L, Jia J H, Lian Z Y, Hu Y H, Guo J, Huo H Q, Zhu Y X, Gong H J. 2019. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage[J]. Ecotoxicology and Environmental Safety, 169:8-17. doi:10.1016/j. ecoenv. 2018.10.105.
Zhang X B, Liu C J. 2015. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids[J]. Molecular Plant, 8(1):17-27. doi: 10.1016/j.molp.2014.11.001.
Zhu Y X, Gong H J, Yin J L. 2019. Role of silicon in mediating salt tolerance in plants:A review[J]. Plants, 8(6):147. doi: 10.3390/plants8060147.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 81
- HTML全文浏览量: 1
- PDF下载量: 11
- 被引次数: 1