Determination of sweet corn seed vigor by near infrared spectra and chemometrics
-
摘要: 【目的】建立一种利用近红外光谱和化学计量学检测甜玉米种子活力指数的方法,为种子批量无损筛选提供新方法。【方法】在反射和透射模式下分别收集甜玉米种子的近红外光谱,采用主成分分析和蒙特卡罗交叉验证方法对异常值进行识别与剔除;选取最合适的预处理方法和变量选择方法,建立并选取最优偏最小二乘法预测模型。【结果】对于漫反射活力指数定量分析模型,采用532份样品进行建模研究,其最佳预处理方法为多项式平滑导数(Savitzky-Golay derivative,SG)+均值中心化(Mean Center,MC),最佳变量选择方法为竞争自适应重加权抽样(Competitive adaptive reweighted sampling,CARS),其模型的性能参数校正相关系数(Rc)、交互验证相关系数(Rcv)、预测相关系数(Rp)、校正均方根误差(RMSEC)、交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.826、0.783、0.663、0.137、0.151和0.199。对于透射活力指数定量分析模型,采用415份样品进行研究,其最佳预处理方法为SG一阶导数平滑,最佳变量选择方法为相关系数法(Correlation coefficients,CC),模型的性能参数Rc、Rcv、Rp、RMSEC、RMSECV和RMSEP分别为0.783、0.680、0.728、0.121、0.142和0.133,该模型不存在过拟合现象,说明光谱采集的透射模型可能更适合测定种子活力指数。【结论】透射光谱可获得更多有关甜玉米种子活力的信息,透射模块是光谱采集预测种子活力的较好方法。Abstract: 【Objective】To develop a new method to measure sweet corn seed vigor by near infrared(NIR) spectroscopy and chemometrics, so as to provide a new method for seed screening in the seed industry.【Method】Near infrared spectra of sweet corn seed under reflection and transmission modes were recorded. Then outliers were identified and eliminated by principal component analysis(PCA) and Monte Carlo cross validation methods. The proper preprocessing methods and variables selection methods were applied to establish and select the partial least squares(PLS) prediction model.【Result】For the vitality index quantitative analysis model of diffuse reflection, a total of 532 samples were used for modeling study. The best preprocessing method was Savitzky-Golay derivative(SG) +Mean Center(MC), and the optimal variable selection method was competitive adaptive reweighted sampling(CARS). The correction correlation coefficient(Rc), cross validation correlation coefficient(Rcv), prediction correlation coefficient(Rp), root mean square error of correction(RMSEC), root mean square error of cross validation(RMSECV) and root mean square error of prediction(RMSEP) of the model were 0.826, 0.783, 0.663, 0.137, 0.151 and 0.199, respectively. For the vitality index quantitative analysis model of transmission, a total of 415 samples were used for modeling study. And the best preprocessing method was SG first derivative smoothing method, and the optimal variable selection method was correlation coefficients(CC). The model performance parameters Rc, Rcv, Rp, RMSEC, RMSECV and RMSEP were 0.783, 0.680, 0.728, 0.121, 0.142 and 0.133, respectively, there was no over-fitting in this model, indicating that the transmission model of spectral acquisition might be more suitable for the determination of seed vigor index.【Conclusion】More information about sweet corn seed vigor can be obtained through transmission spectrum, and transmission module is a better method for spectral acquisition and prediction of seed vigor.
-
Keywords:
- sweet corn /
- seed vigor /
- near infrared spectroscopy /
- chemometrics
-
-
金文玲, 曹乃亮, 朱明东, 陈伟, 张佩光, 赵庆磊, 梁静秋, 余应弘, 吕金光, 阚瑞峰.2020.基于近红外超连续激光光谱的水稻种子活力无损分级检测研究[J].中国光学, 13(5):1032-1043.[Jin W L, Cao N L, Zhu M D, Chen W, Zhang P G, Zhao Q L, Liang J Q, Yu Y H, Lü J G, Kan R F.2020.Nondestructive grading test of rice seed activity using near infrared super-continuum laser spectrum[J].Chinese Journal of Optics, 13(5):1032-1043.]doi: 10.37188/CO.2020-0027. 李华, 王菊香, 邢志娜, 申刚.2011.改进的K/S算法对近红外光谱模型传递影响的研究[J].光谱学与光谱分析, 31(2):362-365.[Li H, Wang J X, Xing Z N, Shen G.2011.Influence of improved Kennard/Stone algorithm on the calibration transfer in near-infrared spectroscopy[J].Spectroscopy and Spectral Analysis, 31(2):362-365.]doi: 10.3964/j.issn.1000-0593(2011)02-0362-04. 李晋华, 杨志良, 王召巴, 王志斌.2013.近红外漫透射技术检测玉米成分[J].红外技术, 35(11):732-736.[Li J H, Yang Z L, Wang Z B, Wang Z B.2013.The corn content measurement with near infrared diffuse transmission[J].Infrared Technology, 35(11):732-736.] 李武, 李妍, 李高科, 高磊, 陈敏忠, 卢爵广, 胡建广, 刘建华.2018.高温老化下甜玉米种子活力近红外光谱检测技术研究[J].核农学报, 32(8):1611-1618.[Li W, Li Y, Li G K, Gao L, Chen M Z, Lu J G, Hu J G, Liu J H.2018.Seed vigor detection of sweet corn by near infrared spectroscopy under high temperature stress[J].Journal of Nuclear Agriculture Sciences, 32(8):1611-1618.]doi: 10.11869/j.issn.100-8551.2018.08.1611. Al-Amery M, Geneve R L, Sanches M F, Armstrong P R, Maghirang E B, Lee C, Vieira R D, Hildebrand D F.2018.Near-infrared spectroscopy used to predict soybean seed germination and vigor[J].Seed Science Research, 28(3):1-8.doi: 10.1017/S0960258518000119.
Armstrong P R, Tallada J G, Hurburgh C R, Hildebrand D F, Specht J E.2011.Development of single-seed near-infrared spectroscopic predictions of corn and soybean constituents using bulk reference values and mean spectra[J].Transactions of the Asabe, 54(4):1529-1535.doi: 10.13031/2013.39012.
Cao D S, Liang Y Z, Xu Q S, Li H D, Chen X.2010.A new strategy of outlier detection for QSAR/QSPR[J].Journal of Computational Chemistry, 31(3):592-602.doi: 10.1002/jcc.21351.
Chen H Z, Ai W, Feng Q X, Jia Z, Song Q Q.2014.FT-NIRspectroscopy and Whittaker smoother applied to joint analysis of duel-components for corn[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 118:752-759.doi: 10.1016/j.saa.2013.09.065.
Cheng X X, Xiong F, Wang C J, Xie H, He S, Geng G H, Zhou Y.2018.Seed reserve utilization and hydrolytic enzyme activities in germinating seeds of sweet corn[J].Pakistan Journal of Botany, 50(1):111-116.
Fan Y M, Ma S C, Wu T T.2020.Individual wheat kernels vigor assessment based on NIR spectroscopy coupled with machine learning methodologies[J].Infrared Physics and Technology, 105:103213.doi: 10.1016/j.infrared.2020.103213.
Jia S Q, Yang L G, An D, Liu Z, Yan Y L, Li S M, Zhao XD, Zhu D H, Gu J C.2016.Feasibility of analyzing frostdamaged and non-viable maize kernels based on near infrared spectroscopy and chemometrics[J].Journal of Cereal Science, 69:145-150.doi: 10.1016/j.jcs.2016.02.018.
Jiang H Y, Zhu Y J, Wei L M, Dai J R, Song T M, Yan Y L, Chen S J.2007.Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy(NIRS) in maize(Zea mays L.)[J].Plant Breeding, 126(5):492-497.doi: 10.1111/j.1439-0523.2007.01338.x.
Kusumaningrum D, Lee H, Lohumi S, Mo C, Kim M S, Cho B K.2018.Non-destructive technique for determining the viability of soybean(Glycine max) seeds using FT-NIR spectroscopy[J].Journal of the Science of Food and Agriculture, 98(5):1734-1742.doi: 10.1002/jsfa.8646.
Lee H S, Jeon Y A, Lee Y Y, Lee G A, Raveendar S, Ma KH.2017.Large-scale screening of intact tomato seeds for viability using near infrared reflectance spectroscopy(NIRS)[J].Sustainability, 9(4):618.doi: 10.3390/su9040618.
Li H D, Liang Y Z, Xu Q S, Cao D S.2009.Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J].Analytica Chimica Acta, 648(1):77-84.doi: 10.1016/j.aca.2009.06.046.
Li H D, Xu Q S, Liang Y Z.2018.libPLS:An integrated library for partial least squares regression and linear discriminant analysis[J].Chemometrics and Intelligent Laboratory Systems, 176:34-43.doi: 10.1016/j.chemolab.2018.03.003.
Min T G, Kang W S.2008.Nondestructive classification between normal and artificially aged corn(Zea mays L.)seeds using near infrared spectroscopy[J].Korean Journal of Crop Science, 53(3):314-319.doi: 10.1016/j.chemolab.03.003.
Mo C, Kim G, Lee K, Kim M S, Cho B K, Lim J, Kang S K.2014.Non-destructive quality evaluation of pepper(Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging[J].Sensors, 14(4):7489-7504.doi: 10.3390/s140407489.
Pang L, Men S, Yan L, Xiao J.2020.Rapid vitality estimation and prediction of corn seeds based on spectra and images using deep learning and hyperspectral imaging techniques[J].IEEE Access, 8:123026.doi: 10.1109/ACCESS.2020.3006495.
Qiu G J, Lu E L, Lu H Z, Xu S, Zeng F G, Shui Q.2018.Single-kernel FT-NIR spectroscopy for detecting supersweet corn(Zea mays L.Saccharata Sturt) seed viability with multivariate data analysis[J].Sensors, 18(4):1010.doi: 10.3390/s18041010.
Song X Z, Tang G, Zhang L D, Xiong Y M, Min S G.2017.Research advance of variable selection algorithms in near infrared spectroscopy analysis[J].Spectroscopy and Spectral Analysis, 37(4):1048-1052.doi: 10.3964/j.issn.1000-0593(2017)04-1048-05.
Wang Y L, Peng Y K, Zhuang Q B, Zhao X L.2020.Feasibility analysis of NIR for detecting sweet corn seeds vigor[J].Journal of Cereal Science, 93:102977.doi: 10.1016/j.jcs.2020.102977.
Xia Z Z, Yang J, Wang J, Wang S P, Liu Y.2020.Optimizing rice near-infrared models using fractional order SavitzkyGolay derivation(FOSGD) combined with competitive adaptive reweighted sampling(CARS)[J].Applied Spectroscopy, 74(4):714-726.doi: 10.1177/0003702819895799.
Yasmin J, Ahmed M R, Lohumi S, Wakholi C, Kim M S, Cho B K.2019.Classification method for viability screening of naturally aged watermelon seeds using FT-NIR spectroscopy[J].Sensors, 19(5):1190.doi:10.3390/s19051 190.
Zhao G W, Yang L L, Wang J H, Zhu Z J.2009.Studies on the rapid methods for evaluating seed vigor of sweet corn[C]//IFIP Advances in Information and Communication Technology, 3:1729-1738.
-
期刊类型引用(1)
1. 陈鹏文,胡军. 基于近红外光谱技术的种子检测研究现状. 南方农机. 2024(22): 62-64 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 74
- HTML全文浏览量: 1
- PDF下载量: 6
- 被引次数: 5