梭梭HaNAC12转录因子抗逆功能验证

穆榕博, 张桦, 周亮第, 刘豪, 姚正培, 任燕萍, 王波, 马丽, 杨文艳

穆榕博, 张桦, 周亮第, 刘豪, 姚正培, 任燕萍, 王波, 马丽, 杨文艳. 2022: 梭梭HaNAC12转录因子抗逆功能验证. 南方农业学报, 53(6): 1654-1665. DOI: 10.3969/j.issn.2095-1191.2022.06.019
引用本文: 穆榕博, 张桦, 周亮第, 刘豪, 姚正培, 任燕萍, 王波, 马丽, 杨文艳. 2022: 梭梭HaNAC12转录因子抗逆功能验证. 南方农业学报, 53(6): 1654-1665. DOI: 10.3969/j.issn.2095-1191.2022.06.019
MU Rong-bo, ZHANG Hua, ZHOU Liang-di, LIU Hao, YAO Zheng-pei, REN Yan-ping, WANG Bo, MA Li, YANG Wen-yan. 2022: Stress-resistance functional validation of transcription factor HaNAC12 of Haloxylon ammodendron. Journal of Southern Agriculture, 53(6): 1654-1665. DOI: 10.3969/j.issn.2095-1191.2022.06.019
Citation: MU Rong-bo, ZHANG Hua, ZHOU Liang-di, LIU Hao, YAO Zheng-pei, REN Yan-ping, WANG Bo, MA Li, YANG Wen-yan. 2022: Stress-resistance functional validation of transcription factor HaNAC12 of Haloxylon ammodendron. Journal of Southern Agriculture, 53(6): 1654-1665. DOI: 10.3969/j.issn.2095-1191.2022.06.019

梭梭HaNAC12转录因子抗逆功能验证

基金项目: 

国家自然科学基金项目(32060070)

详细信息
    作者简介:

    穆榕博(1996-),https://orcid.org/0000-0001-7938-5262,研究方向为植物抗逆分子机制,E-mail:zxcaim@sina.com

    通讯作者:

    张桦(1972-),https://orcid.org/0000-0001-9635-2542,教授,主要从事植物抗逆分子机制研究工作,E-mail:hazelzhang@163.com

  • 中图分类号: S792.99

Stress-resistance functional validation of transcription factor HaNAC12 of Haloxylon ammodendron

Funds: 

National Natural Science Foundation of China (32060070)

  • 摘要: 【目的】验证梭梭NAC转录因子基因(HaNAC12)的抗逆功能,以期解析梭梭响应逆境胁迫的分子机制,为梭梭及其他作物抗逆遗传改良提供理论参考。【方法】通过实时荧光定量PCR对HaNAC12基因在干旱、高盐、ABA处理下的表达模式分析。利用同源重组法、农杆菌介导喷花法、喷洒除草剂等方法构建并筛选HaNAC12转基因拟南芥阳性植株,在不同胁迫处理后测定其与野生型(WT)在萌发率、气孔开度、相对含水量、株高、生长速率和生理指标等方面的差异,并以正常生长的植株为对照,验证HaNAC12基因在拟南芥逆境胁迫下的抗逆功能。【结果】 HaNAC12基因相对表达量在干旱胁迫12 h时极显著高于0 h(P<0.01,下同),盐胁迫1 h时极显著高于0 h,ABA处理3和12 h均显著高于0 h (P<0.05,下同)。筛选获得3个高表达量的T3代转基因株系HaNAC12-1、HaNAC12-2和HaNAC12-3。种子干旱胁迫后WT的最终萌发率为45.00%,3个转基因株系的最终萌发率为66.11%~85.00%;种子盐胁迫后WT的最终萌发率为36.42%,3个转基因株系的最终萌发率为49.38%~58.64%。自然干旱和高盐胁迫下WT出现明显的干枯、枯黄现象,而3个转基因株系未出现干枯;自然干旱胁迫下3个转基因株系出现了提前抽薹、早花等生殖发育加速现象,且植株生长速率比WT快。苗期自然干旱胁迫后WT的气孔开度缩小67.54%,3个转基因株系的气孔开度分别缩小了91.08%、83.14%和85.04%,且HaNAC12-1、HaNAC12-2和HaNAC12-3株系的相对含水量显著或极显著高于WT。干旱和盐胁迫后3个转基因株系的丙二醛含量、脯氨酸含量、过氧化氢含量、过氧化氢酶活性均较胁迫前明显上升,其中,脯氨酸含量和过氧化氢酶活性上升幅度较WT大,而丙二醛含量和过氧化氢含量上升幅度较WT小。【结论】拟南芥过表达HaNAC12基因可增强拟南芥在萌发期和苗期对干旱和高盐胁迫的抗性,干旱胁迫可促进拟南芥开花,说明HaNAC12基因可提高转基因拟南芥的抗旱和耐盐性。
    Abstract: 【Objective】To verify the stress-resistance function of the NAC transcription factor gene(HaNAC12)of Haloxylon ammodendron,to analyze the molecular mechanism of H.ammodendron in response to stress,so as to provide theoretical reference for the genetic improvement of stress-resistance in H.ammodendron and other crops.【Method】Expression pattern of HaNAC12 gene under drought,salt and ABA treatments by quantitative real-time PCR(qRT-PCR).HaNAC12 transgenic positive plants of Agrobacterium tumefaciens were cultivated and screened through homologous recombination method,A.tumefaciens-mediated flower spraying method and herbicide spraying method.Difference of germination rate,stomatal openness,relative water content,plant height,growth rate and physiological indexes after different stress treatments between the positive plants and wild type plant(WT)were determined and plants without treatments were taken as control to verify the stress-resistance function of HaNAC12 gene in A.tumefaciens under stresses.【Result】 Relative expression of HaNAC12 gene was extremely significantly higher at 12 h of drought stress than that at 0 h (P<0.01,the same below).At 1 h of salt stress,relative expression of the gene was extremely significantly higher than that at 0 h.Relative expression of the gene was extremely significantly higher than that at both 3 and 12 h of ABA treatment(P<0.05,the same below).Three high expression T3 generation transgenic lines HaNAC12-1,HaNAC12-2 and HaNAC12-3 were obtained by screening.Mean final germination rate of WT after seed drought stress was 45.00% and the final germination rate of the 3 transgenic lines was 66.11%-85.00%.Final germination rate of WT after seed salt stress was 36.42% and the final germination rate of the 3 transgenic strains was above 49.38%-58.64%.WT turned dry and yellow under natural drought and salt stress,while the 3 transgenic lines did not turn dry.The 3 transgenic lines showed seedling in accelerated development such as early bolting and early flowering under natural drought stress,and their growth rate was faster than WT.Stomatal opening was reduced by 67.54% in WT and 91.08%,83.14% and 85.04% in the three transgenic strains after natural drought stress at seedling stage,and relative water contents of HaNAC12-1,HaNAC12-2 and HaNAC12-3 strains were significantly or extremely significantly higher than that of WT.Malondialdehyde content,proline content,hydrogen peroxide content and catalase activity of the 3 transgenic strains increased significantly after drought and salt stress compared with those before stress,with greater increases of proline content and catalase activity than WT and smaller increases of malondialdehyde content and hydrogen peroxide content increasing than WT.【Conclusion】 Overexpression gene of the HaNAC12 in A.tumefaciens enhances its resistance to drought and salt stress at the germination and seedling stages,and promotes flowering in Arabidopsis after drought stress,indicating that HaNAC12 gene can improve the drought and salt tolerance of transgenic Arabidopsis.
  • 陈文烨,杨帆,刘永伟,董福双,赵和,柴建芳,吕孟雨,周硕. 2020.小麦TaNAC-B072基因的克隆和表达分析[J].江西农业学报, 32(8):1-7.[Chen W Y, Yang F, Liu Y W,Dong F S, Zhao H, Chai J F, Lü M Y, Zhou S. 2020.Cloning and expression analysis of TaNAC-B072 in wheat[J]. Acta Agriculturae Jiangxi, 32(8):1-7.]doi: 10.19386/j.cnki.jxnyxb.2020.08.01.
    丁泽红,颜彦,付莉莉,黄猛,铁韦韦,胡伟. 2016.木薯NAC转录因子Rd26基因克隆及表达[J].南方农业学报, 47(11):1822-1826.[Ding Z H, Yan Y, Fu L L, Huang M,Tie W W, Hu W. 2016. Clone and expression of NAC transcription factor Rd26 gene from Manihot esculenta Crantz[J]. Journal of Southern Agriculture, 47(11):1822-1826.]doi: 10.3969/j:issn.2095-1191.2016.11.1822.
    韩聚东. 2016.梭梭NAC转录因子家族基因的克隆和HaNAC3基因的功能分析[D].乌鲁木齐:新疆农业大学.[Han J D. 2016. Cloning of Haloxylon NAC transcription factor family genes and functional analysing of HaNAC3 gene[D]. Urumqi:Xinjiang Agricultural University.]
    赖燕. 2011.辣椒均一化全长cDNA文库的构建及若干重要基因的表达或功能分析[D].福州:福建农林大学.[Lai Y. 2011. Construction of a normalized full-length cDNA library and expressional or functional analysis of several important genes in pepper[D]. Fuzhou:Fujian Agriculture and Forestry University.]
    李伟,韩蕾,钱永强,孙振元. 2011.植物NAC转录因子的种类、特征及功能[J].应用与环境生物学报, 17(4):596-606.[Li W, Han L, Qian Y Q. Sun Z Y. 2011. Characteristics and functions of NAC transcription factors in plants[J]. Chinese Journal of Applied&Environmental Biology, 17(4):596-606.]doi: 10.3724/SP.J.1145.2011.00596.
    李小兰,胡玉鑫,杨星,于晓东,李秋莉. 2013.非生物胁迫相关NAC转录因子的结构及功能[J].植物生理学报, 49(10):1009-1017.[Li X L, Hu Y X, Yang X, Yu X D, Li Q L. 2013. Structure and functions of NAC transcription factors involved in abiotic stress[J]. Plant Physiology Journal, 49(10):1009-1017.]doi:10.13592/j.cnki.ppj.2013. 10.016.
    李志强,方辉,张桦,姚正培,王泽,任财,麻浩. 2016.梭梭NAC转录因子HaNAC3~4的克隆及表达分析[J].基因组学与应用生物学. 35(10):2827-2833.[Li Z Q, Fang H.Zhang H, Yao Z P, Wang Z, Ren C, Ma H. 2016. Cloning and expression analysis of NAC transcription factor HaNAC3~4 in Haloxylon ammodendron[J]. Genomics and Applied Biology, 35(10):2827-2833.]doi: 10.13417/j.gab.035.002827.
    李志强. 2016.梭梭干旱转录组测序和分析及SNAC亚族基因的克隆[D].乌鲁木齐:新疆农业大学.[Li Z Q. 2016.Sequencing, analysing of Haloxylon ammodendron transcriptome and cloning of SNAC subfamily under drought[D]. Urumqi:Xinjiang Agricultural University.]
    卢惠君,李子义,梁瀚予,岳远志,周天畅,杨玉璋,王玉成,及晓宇. 2019.刚毛柽柳NAC24基因的表达及抗逆功能分析[J].林业科学, 55(3):54-63.[Lu H J, Li Z Y,Liang H Y, Yue Y Z Zhou T C, Yang Y Z, Wang Y C, Ji X Y. 2019. Expression and stress tolerance analysis of NAC24 from Tamarix hispida[J]. Scientia Silvae Sinicae, 55(3):54-63.]doi: 10.11707/j.1001-7488.20190306.
    满玲娟,张桦,姚正培,宗兴风,李志强. 2019.梭梭同化枝及其叶苞状虫瘿的转录组差异表达分析[J].南方农业学报, 50(8):1657-1664.[Man L J, Zhang H, Yao Z P,Zong X F, Li Z Q. 2019. Differential expression analysis of transcriptome of assimilating branches and leafy-bracted galls of Haloxylon ammodendron[J]. Journal of Southern Agriculture, 50(8):1657-1664.]doi:10.3969/j.issn. 2095-1191.2019.08.02.
    满玲娟. 2021.梭梭14-3-3蛋白基因HaFT-3及启动子的功能分析[D].乌鲁木齐:新疆农业大学.[Man L J. 2021.Functional analysis of 14-3-3 protein gene HaFT-3 and its promoter in Haloxylon ammodendron[D]. Urumqi:Xinjiang Agricultural University.]
    彭志红,彭克勤,胡家金,萧浪涛. 2002.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报, 18(4):80-83.[Peng Z H, Peng K Q, Hu J J, Xiao L T. 2002. Research progress on accumulation of proline under osmotic stress in plants[J]. Chinese Agricultural Science Bulletin, 18(4):80-83.]doi: 10.3969/j.issn.1000-6850.2002.04.025.
    伍霞,姚正培,宗兴风,王波,任燕萍,张桦. 2022. HaNAC2转基因烟草响应干旱和高温胁迫的分子机制[J/OL].分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20220214.1749.004.html" target="_blank"> http://kns.cnki.net/kcms/detail/46.1068.S.20220214.1749.004.html.[Wu X, Yao Z P, Zong X F,Wang B,Ren Y P, Zhang H. 2022. The molecular mechanism of HaNAC2 transgenic tobacco response to drought and high temperature stresses[J/OL]. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20220214.1749.004.html" target="_blank"> http://kns.cnki.net/kcms/detail/46.1068.S.20220214.1749.004.html.
    伍霞. 2021.梭梭HaNAC2/3/42基因抗逆分子机制研究[D].乌鲁木齐:新疆农业大学.[Wu X. 2021. Molecular mechanism of adversity resistance of Haloxylon ammodendron's HaNAC2/3/42 gene[D]. Urumqi:Xinjiang Agricultural University.]
    周亮第,姚正培,杨文艳,刘豪,张振清,王波,任燕萍,张桦. 2021.梭梭HaNAC20基因克隆及特性分析[J].西北农业学报, 30(10):1556-1564.[Zhou L D, Yao Z P, Yang W Y, Liu H, Zhang Z Q, Wang B, Ren Y P, Zhang H. 2021.Clong and characteristic of HaNAC20 from Haloxylon ammodendron (C.A.Mey.) Bunge ex Fenzl[J]. Acta Agriculturae Boreali-occidentalis Sinica. 30(10):1556-1564.]doi: 10.7606/j.issn.1004-1389.2021.10.013.
    周丽霞,曹红星. 2020.油棕EgNAC33基因的克隆与逆境响应表达分析[J].江西农业学报, 32(6):6-10.[Zhou L X,Cao H X. 2020. Cloning of EgNAC33 and its expression analysis under stress in oil palm[J]. Acta Agriculturae Jiangxi, 32(6):6-10.]doi:10.19386/j.cnki.jxnyxb.2020. 06.02.
    宗兴风,刘栓栓,刘豪,姚正培,王波,任燕萍,张桦. 2019.梭梭HaNAC2的表达分析和抗逆功能鉴定[J].西北农业学报, 28(8):1317-1325.[Zong X F, Liu S S, Liu H, Yao Z P, Wang B, Ren Y P, Zhang H. 2019. Expression analysis of HaNAC2 and identification of stress resistance function in Haloxylon ammodendron[J]. Northwest Journal of Agriculture, 28(8):1317-1325.]doi: 10.7606/j.issn.1004-1389.2019.08.014.

    Chung P J, Jung H, Choi Y D, Kim J K. 2018. Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance[J].BMC Genomics, 19(1):1-17. doi: 10.1186/s12864-017-4367-1.

    Duval M, Hsieh T F, Kim S Y, Thomas T L. 2002. Molecular characterization of AtNAM. a member of theArabidopsis NAC domain superfamily[J]. Plant Molecular Biology, 50(2):237-248. doi: 10.1023/A:1016028530943.

    Ernst H A, Olsen N A,Skrriver Karen, Larsen S, Leiggio L L. 2004. Structure of the conserved domain of ANAC. a member of the NAC family of transcription factors[J].EMBO Reports, 5(3). doi: 10.1038/sj.embor.7400093.

    Fang Y J, Liao K F, Du H, Xu Y, Song H, Li X, Xiong L. 2015. A stress-responsive NAC transcription factor SNAC3confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experimental Botany, 66(21):6803-6817. doi: 10.1093/jxb/erv386.

    Fujiwara S, Mitsuda N. 2016. ANAC075, a putative regulator of VASCULAR-RELATED NAC-DOMAIN7, is a repressor of flowering[J]. Plant Biotechnology, 16.0215b. doi: 10.5511/plantbiotechnology.16.0215b.

    Jia D F, Jiang Q, Nocker S V, Gong X Q. 2019. An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants[J]. Plant Physiology and Biochemistry, 139:504-512. doi: 10.1016/j.plaphy.2019.04.011.

    Liu X, Hong L, Li X Y, Yao Y, Hu B, Li L. 2011. Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea[J]. Bioscience, Biotechnology, and Biochemistry, 75(3):443-450. doi: 10.1271/bbb.100614.

    Morishita T, Kojima Y, Maruta T, Nishizawa Y A, Yabuta Y,Shigeoka S. 2009. Arabidopsis NAC transcription factor,ANAC078, regulates flavonoid biosynthesis under high-light[J]. Plant and Cell Physiology, 50(12):2210-2222.doi: 10.1021/nl503125u.

    Ohbayashi I, Lin C Y, Shinohara N, Matsumura Y, Machida Y,Horiguchi G,Tsukaya H,Sugiyama M. 2017. Evidence for a role of ANAC082 as a ribosomal stress response mediator leading to growth defects and developmental alterations in Arabidopsis[J]. The Plant Cell. 29(10):2644-2660. doi: 10.1105/tpc.17.00255.

    Olsen A N, Ernst H A, Leggio L L, Skriver K. 2005. NAC transcription factors:Structurally distinct, functionally diverse[J]. Trends in Plant Science, 10(2):79-87. doi:10. 1016/j.tplants.2004.12.010.

    Pimenta M R, Silva P A, Mendes G C, Camargo M G, Roberta A J, Neves C H D, Batista M J P, Bernardes B O J,Avelar C P, Paes M B, Ferreira S J C. 2016. The stressinduced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence[J]. Plant and Cell Physiology, 57(5):1098-1114. doi: 10.1093/pcp/pcw059.

    Pinheiro G L, Marques C S, Costa M D, Reis P A B, Alves M S, Carvalho C M, Fietto L G, Fontes E P B. 2009. Complete inventory of soybean NAC transcription factors:Sequence conservation and expression analysis uncover their distinct roles in stress response[J]. Gene, 444(1-2):10-23. doi: 10.1016/j.gene.2009.05.012.

    Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R. 2000.Arabidopsis transcription factors:Genome-wide comparative analysis among eukaryotes[J]. Science, 290(5499):2105-2110. doi: 10.1126/science.290.5499.2105.

    So H A, Lee J H. 2019. NAC Transcription factors from soybean (Glycine max L.) differentially regulated by abiotic stress[J]. Journal of Plant Biology, 62(2):147-160. doi: 10.1007/s12374-018-0285-2.

    Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. 1996.The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 85(2):159-170. doi: 10.1016/S0092-8674(00)81093-4.

    Wang B, Du H H, Yao Z P, Ren C, Ma L, Wang J, Zhang H,Ma H. 2018. Validation of reference genes for accurate normalization of gene expression with quantitative realtime PCR in Haloxylon ammodendron under different abiotic stresses[J]. Physiology and Molecular Biology of Plants, 24(3):455-463. doi: 10.1007/s12298-018-0520-9.

    Wang X, Basnayake B, Zhang H, Li G J, Song F M. 2009.The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens[J] Molecular PlantMicrobe Interactions, 22(10):1227-1238. doi: 10.1016/j.ppnp.2008.12.012.

    Wang Y, Cao S J, Guan C J, Kong X, Zhang Y. 2020. Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response[J]. Plant Physiology and Biochemistry, 149-158. doi: 10.1016/j.plaphy.2020.01.036.

    Xiong Y, Liu T, Tian C, Sun S M, Li J, Chen M. 2005. Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots[J]. Plant Molecular Biology, 59(1):191-203. doi: 10.1007/s11103-005-6503-6.

    Yabuta Y, Osada R, Morishita T, Nishizawa Y A, Tamoi M,Maruta T, Shigeoka S. 2011. Involvement of Arabidopsis NAC transcription factor in the regulation of 20S and 26S proteasomes[J]. Plant Science, 181(4):421-427. doi: 10.1016/j.plantsci.2011.07.001.

    Yamaguchi M, Nagahage I S P, Ohtani M, Ishikawa T, Uchimiya H, Kawai-Yamada M, Demura T. 2015. Arabidopsis NAC domain proteins VND-INTERACTING1 and ANAC103 interact with multiple NAC domain proteins[J]. Plant Biotechnology, 32:119-123. doi: 10.5511/plantbiotechnology.15.0208a.

    Yang X W, He K, Chi X Y, Chai G, Wang Y, Jia C, Zhang H,Zhou G, Hu R. 2018. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Science, 277:229-241.doi: 10.1016/j.plantsci.2018.09.013.

    Yu X W, Liu Y M, Wang S, Tao Y, Wang Z K, Shu Y J, Peng H, Mijiti A, Wang Z, Zhang H, Ma H. 2016. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis[J].Plant Cell Reports, 35(3):613-627. doi: 10.1007/s00299-015-1907-5.

    Zhang G Y, Huang S Q, Zhang C, Li D F, Wu Y B, Deng J L, Shan S L, Qi J M. 2021, Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute (Corchorus capsularis L.)[J]. Protoplasma, 258(2):337-345. doi: 10.1007/s00709-020-01569-y.

  • 期刊类型引用(3)

    1. 王晓菲,高利盈,刘宁,程钧,王伟,谭彬,郑先波,叶霞,冯建灿,张郎郎. 桃基因PpNAC的鉴定及其在不同发育时期的表达分析. 河南农业大学学报. 2024(03): 412-423 . 百度学术
    2. 郑佳秋,王薇薇,梅燚,吴永成,万红建,潘宝贵,尤春,刘哲,沈峰,冯汝超. 辣椒DREB转录因子鉴定及其在涝害胁迫下的表达分析. 江苏农业学报. 2023(01): 148-159 . 百度学术
    3. 沈永强,侯栋,李亚莉,杨琴,岳宏忠,张东琴,赵鹏,钟新榕,颉建明. 黄瓜枯萎病拮抗菌株的防病促生性能鉴定. 甘肃农业大学学报. 2023(04): 162-169+182 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  68
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-03-29
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回