水稻幼苗响应褐飞虱和稻瘿蚊的转录组分析

卢柏亦, 蒋哲, 鄢柳慧, 钟小惠, 李晶莹, 黄福钢, 李发活, 莫德原, 邱永福

卢柏亦, 蒋哲, 鄢柳慧, 钟小惠, 李晶莹, 黄福钢, 李发活, 莫德原, 邱永福. 2022: 水稻幼苗响应褐飞虱和稻瘿蚊的转录组分析. 南方农业学报, 53(3): 628-640. DOI: 10.3969/j.issn.2095-1191.2022.03.005
引用本文: 卢柏亦, 蒋哲, 鄢柳慧, 钟小惠, 李晶莹, 黄福钢, 李发活, 莫德原, 邱永福. 2022: 水稻幼苗响应褐飞虱和稻瘿蚊的转录组分析. 南方农业学报, 53(3): 628-640. DOI: 10.3969/j.issn.2095-1191.2022.03.005
LU Bai-yi, JIANG Zhe, YAN Liu-hui, ZHONG Xiao-hui, LI Jing-ying, HUANG Fu-gang, LI Fa-huo, MO De-yuan, QIU Yong-fu. 2022: Transcriptome analysis of rice seedlings responding to brown planthopper infestation and to gall midge infestation. Journal of Southern Agriculture, 53(3): 628-640. DOI: 10.3969/j.issn.2095-1191.2022.03.005
Citation: LU Bai-yi, JIANG Zhe, YAN Liu-hui, ZHONG Xiao-hui, LI Jing-ying, HUANG Fu-gang, LI Fa-huo, MO De-yuan, QIU Yong-fu. 2022: Transcriptome analysis of rice seedlings responding to brown planthopper infestation and to gall midge infestation. Journal of Southern Agriculture, 53(3): 628-640. DOI: 10.3969/j.issn.2095-1191.2022.03.005

水稻幼苗响应褐飞虱和稻瘿蚊的转录组分析

基金项目: 

广西自然科学基金项目(2020GXNSFDA297008)

详细信息
    作者简介:

    卢柏亦(1997-),https://orcid.org/0000-0003-0788-7401,研究方向为水稻抗虫基因鉴定,E-mail:lubaiyii@foxmail.com

    通讯作者:

    邱永福(1977-),https//orcid.org/0000-0001-9532-4144,博士,副教授,主要从事水稻抗虫分子育种研究工作,E-mail:yfqiu@126.com

  • 中图分类号: S435.112

Transcriptome analysis of rice seedlings responding to brown planthopper infestation and to gall midge infestation

Funds: 

Guangxi Natural Science Foundation(2020GXNSFDA297008)

  • 摘要: 【目的】筛选出同时响应褐飞虱和稻瘿蚊取食的基因,揭示水稻幼苗应对2种害虫时基因表达层面的差异,为后续挖掘广谱抗虫基因和解析水稻抗虫机制打下理论基础。【方法】以水稻品种9311为供试植物,分别对15日龄的水稻幼苗进行褐飞虱和稻瘿蚊接虫处理,观测幼苗表型,并通过转录组测序技术分别对褐飞虱接入后24 h和稻瘿蚊接入后7 d的水稻幼苗进行转录组测序。以水稻日本晴基因组作为参考基因组进行对比,利用FPKM法计算基因表达量,设定参数(|log2 FC|>1且P<0.05)筛选差异表达基因。结合基因差异表达分析和功能富集分析,研究水稻响应2种害虫的机制异同点。【结果】鉴定出响应褐飞虱取食的差异表达基因3963个,响应稻瘿蚊取食的差异表达基因1206个,有251个差异表达基因同时响应2种害虫,其中108个具有相同表达模式,143个具有相反表达模式。GO功能注释分析表明,褐飞虱取食显著影响植物体内细胞壁合成和缺水响应,而稻瘿蚊取食则对植物光合作用的影响更显著,具有相同表达模式的差异表达基因主要富集在光合作用、水杨酸合成、茉莉酸信号转导和伤害响应等生物学功能,而具有相反表达模式的差异表达基因仅富集在乙醛酸循环。KEGG信号通路富集分析表明,褐飞虱和稻瘿蚊取食均显著影响植物体内次生代谢物的合成,相同表达模式的差异表达基因富集到MAPK信号通路、植物激素信号转导通路及光合作用等6个通路,而相反表达模式的差异表达基因没有富集的通路。【结论】水稻应对褐飞虱和稻瘿蚊的基因表达调控存在相同点和不同之处,共响应2种害虫的调控通路可能在水稻抗虫过程中发挥重要作用。
    Abstract: 【Objective】 To screen out the functional genes that respond to both brown planthopper(BPH)infestation and rice gall midge(GM)infestation and reveal the difference of gene expression level in rice seedlings responding to the two pests,so as to provide theoretical basis for new broad-spectrum resistance and rice anti-insect mechanism.【Method】 Rice 9311 was the tested rice variety. Fifteen-day-old seedlings were treated with BPH and GM respectively to observe seedling phenotypes and to sample for transcriptome which sequence was performed on rice seedlings that were collected 24 hours after BPH infestation and 7 days after GM infestation,respectively. Taking the genome of Nipponbare(MSU7) as a reference to align the sequences,the differentially expressed genes(DEGs)were screened by calculating the gene expression level in Fragments Per Kilobase per Million(FPKM),with(|log2 FC| ≥ 1 and P ≤ 0.05)as the parameter. Through gene differential expression analysis and functional enrichment analysis,the similarities and differences of rice response mechanisms to the two pests were identified.【Result】 The results showed that 3963 genes were differentially expressed in BPH infestation and 1206 genes were differentially expressed in GM infestation. And 251 genes were found responsive to both pests,of which 108 genes with the same expression pattern and 143 genes with opposite expression patterns. GO enrichment analysis showed that:BPH infestation significantly influenced the cell wall biogenesis and the response to water deprivation in rice seedlings;seedlings of GM infestation enriched GO terms were mostly chloroplast or photosynthesisrelated;the DEGs with the same expression patterns of two pest stresses were enriched to some biological processes such as photosynthesis,salicylic acid biosynthetic process,regulation of jasmonic acid mediated signaling pathway and response to wounding; whereas the DEGs with the opposite expression patterns of two pest stresses were enriched to glyoxylate cycle only. KEGG enrichment analysis indicated that:Both BPH infestation and GM infestationsignificantly affected the biosynthesis of secondary metabolites in seedlings;the DEGs with the same expression patterns in both treatments were enriched into six pathways mainly involved in MAPK signaling pathway,plant hormone signal transduction pathway,photosynthesis pathway;while no significant KEGG pathway was enriched in the DEGs with opposite expression patterns.【Conclusion】These results suggest that the common pathways in two pest infestations probably play an important role in rice resistance while similarities and differences exist in the regulations of gene expression between BPH infestation and GM infestation.
  • 曹征鸿,贺康,徐乐,汤沈杨,王亚琴,李飞.2020.苗期水稻响应褐飞虱取食的基因差异表达分析[J].应用昆虫学报,57(4):911-920.[Cao Z H,He K,Xu L,Tang S Y,Wang Y Q,Li F.2020.Change in the gene expression of seedling stage rice in response to feeding by the brown planthopper Nilaparvata lugens (Stål)(Hemiptera:Delphacidae)[J].Chinese Journal of Applied Entomology 57(4):911-920.]doi: 10.7679/j.issn.2095-1353.2020.093.
    陈灿,张宗琼,夏秀忠,杨行海,农保选,张晓丽,徐志健,李丹婷,郭辉,冯锐.2021.代谢组学揭示水稻-稻瘿蚊互作的潜在生化标识物[J].南方农业学报,52(10):2662-2670.[Chen C,Zhang Z Q,Xia X Z,Yang X H,Nong BX,Zhang X L,Xu Z J,Li D T,Guo H,Feng R.2021.Metabolomics reveals potential biomarkers of rice gall midge (Orseolia oryzae) interactions[J].Journal of Southern Agriculture,52(10):2662-2670.]doi: 10.3969/j.issn.2095-1191.2021.10.005.
    杜波,陈荣智,何光存.2018.抗褐飞虱基因的发掘、鉴定与利用[J].生命科学,30(10):1072-1082.[Du B,Chen R Z,He G C.2018.The progress of functional genomics research of rice resistance to insect[J].Chinese Bulletin of Life Sciences,30(10):1072-1082.]doi: 10.13376/j.cbls/2016158.
    黄凤宽,韦素美,梁广文,黄所生,蒋显斌,罗善昱,李青.2006.水稻品种RP1976-18-6-4-2对褐飞虱和稻瘿蚊的抗性评价及其遗传分析[J].中国水稻科学,20(1):113-115.[Huang F K,Wei S M,Liang G W,Huang S S,Jiang XB,Luo S Y,Li Q.2006.Genetic analysis on the resistance to the brown planthopper and rice gall midge in rice variety RP1976-18-6-4-2[J].Chinese Journal of Rice Science,20(1):113-115.]doi: 10.16819/j.1001-7216.2006.01.021.
    李毅,张嘉娇,杜波,何光存,李家儒.2018.水稻与褐飞虱化学关系的研究进展[J].植物生理学报,54(4):528-538.[Li Y,Zhang J J,Du B,He G C,Li J R.2018.Research progress of chemical interactions between rice and brown planthopper[J].Plant Physiology Journal,54(4):528-538.]doi: 10.13592/j.cnki.ppj.2017.0530.
    秦学毅,邓国富,冯锐,郭辉,刘百龙.2016.稻褐飞虱和稻瘿蚊双抗种质的抗性基因精细定位及创新利用[Z].国家科技成果.[Qin X Y,Deng G F,Feng R,Guo H,Liu BL.2016.Fine mapping and innovative utilization of resistance genes of rice brown planthopper and rice gall midge double resistant germplasm[Z].National Scientific and Technological Achievements.]
    吴碧球,黄凤宽,黄所生,韦素美.2014.水稻品种ARC5833对稻瘿蚊的抗性评价及其遗传分析[J].西南农业学报,27(4):1483-1487.[Wu B Q,Huang F K,Huang S S,Wei S M.2014.Identification and genetic analysis of gall midge resistance in rice variety ARC5833[J].Southwest China Journal of Agricultural Sciences,27(4):1483-1487.]doi: 10.16213/j.cnki.scjas.2014.04.017.
    鄢柳慧,黄福钢,舒宛,张启明,赵能,莫心怡,王驰,曹凯,邱永福.2020.籼稻品种'ARC5833'抗褐飞虱基因的遗传分析与定位[J].分子植物育种,18(18):6038-6043.[Yan L H,Huang F G,Shu W,Zhang Q M,Zhao N,Mo X Y,Wang C,Cao K,Qiu Y F.2020.Genetic analysis and mapping of brown planthopper resistance gene in indica rice variety'ARC5833'[J].Molecular Plant Breeding,18(18):6038-6043.]doi: 10.13271/j.mpb.018.006038.
    严火其.2021.农业害虫危害何以越来越严重[J].中国农史,40(3):3-15.[Yan H Q.2021.Why are agricultural pests becoming more and more harmful[J].Agricultural History of China,40(3):3-15.]
    杨利艳,张玉荣,杨雅舒,王美霞,陈保国,赵丽,张丽光,王创云.2020.基于RNA-seq数据分析玉米抗虫响应基因的可变剪接事件[J].河南农业大学学报,54(2):181-188.[Yang L Y,Zhang Y R,Yang Y S,Wang M X,Chen BG,Zhao L,Zhang L G,Wang C Y.2020.Analysis of alternative splicing events of insect-resistant response genes based on RNA-seq data in Zea mays[J].Journal of Henan Agricultural University,54(2):181-188.]doi: 10.16445/j.cnki.1000-2340.20200403.009.
    杨孟可,刘赛,乔海莉,郭昆,徐荣,徐常青,陈君.2021.致瘿昆虫对寄主植物生理和代谢的影响[J].昆虫学报,64(4):536-548.[Yang M K,Liu S,Qiao H L,Guo K,Xu R,Xu C Q,Chen J.2021.Influences of gall-inducing insects on the physiology and metabolism of host plants[J].Acta Entomologica Sinica,64(4):536-548.]doi: 10.16380/j.kcxb.2021.04.012.
    张文辉,刘光杰.2003.植物抗虫性次生物质的研究概况[J].植物学通报,20(5):522-530.[Zhang W H,Liu G J.2003.A review on plant secondary substances in plant resistance to insect pests[J].Chinese Bulletin of Botany,20(5):522-530.]doi: 10.3969/j.issn.1674-3466.2003.05.002.

    Agarrwal R,Bentur J S,Nair S.2014.Gas chromatography mass spectrometry based metabolic profiling reveals biomarkers involved in rice-gall midge interactions[J].Journal of Integrative Plant Biology,56(9):837-848.doi: 10.1111/jipb.12244.

    Fay P A,Hartnett D C,Knapp A K.1993.Increased photosynthesis and water potentials in Silphium integrifolium galled by cynipid wasps[J].Oecologia,93(1):114-120.doi: 10.1007/bf00321200.

    Florentine S K,Raman A,Dhileepan K.2005.Effects of gall induction by Epiblema strenuana on gas exchange,nutrients,and energetics in Parthenium hysterophorus[J].Biocontrol,50(5):787-801.doi: 10.1007/s10526-004-5525-3.

    Giron D,Huguet E,Stone G N,Body M.2016.Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant[J].Journal of Insect Physiology,84:70-89.doi: 10.1016/j.jinsphys.2015.12.009.

    Guo J P,Xu C X,Wu D,Zhao Y,Qiu Y F,Wang X X,Ouyang Y D,Cai B D,Liu X,Jing S L,Shangguan X X,Wang H Y,Ma Y H,Hu L,Wu Y,Shi S J,Wang W L,Zhu L L,Xu X,Chen R Z,Feng,Y Q,Du B,He G C.2018.Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice[J].Nature Genetics,50(2):297-306.doi: 10.1038/s41588-018-0039-6.

    Howe G A,Jander G.2008.Plant immunity to insect herbivores[J].Annual Review of Plant Biology,59:41-66.doi: 10.1146/annurev.arplant.59.032607.092825.

    Hu J,Zhou J B,Peng X X,Xu H H,Liu C X,Du B,Yuan HY,Zhu L L,He G C.2011.The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding[J].Plant Physiology,156(2):856-872.doi: 10.1104/pp.111.174334.

    Hu X Y,Su S L,Liu Q S,Jiao Y Y,Peng Y F,Li Y H,Turlings T C.2020.Caterpillar-induced rice volatiles provide enemy-free space for the offspring of the brown planthopper[J].Elife,9:e55421.doi: 10.7554/eLife.55421.

    Huang M Y,Huang W D,Chou H M,Chen C C,Chen P J,Chang Y T,Yang C M.2015.Structural,biochemical,and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata[J].BMC Plant Biology,15(1):61.doi: 10.1186/s12870-015-0446-0.

    Huang M Y,Lin K H,Yang M M,Chou H M,Yang C M,Chang Y T.2011.Chlorophyll fluorescence,spectral properties,and pigment composition of galls on leaves of Machilus thunbergii[J].International Journal of Plant Sciences,172(3):323-329.doi: 10.1086/658157.

    Li J C,Liu X L,Wang Q,Huangfu J Y,Schuman M C,Lou,Y G.2019.A group D MAPK protects plants from autotoxicity by suppressing herbivore-induced defense signaling[J].Plant Physiology,179(4):1386-1401.doi: 10.1104/pp.18.01411.

    Li R,Zhang J,Li J C,Zhou G X,Wang Q,Bian W B,Erb M,Lou Y G.2015.Prioritizing plant defence over growth through WRKY regulation facilitates infestation by nontarget herbivores[J].Elife,4:e04805.doi: 10.7554/elife.04805.020.

    Li Y,Mo Y,Li Z H,Yang M,Tang L H,Cheng L,Qiu Y F.2020.Characterization and application of a gall midge resistance gene (Gm6) from Oryza sativa'Kangwenqingzhan'[J].Theoretical and Applied Genetics,133(2):579-591.doi: 10.1007/s00122-019-03488-w.

    Ling Y,Weilin Z.2016.Genetic and biochemical mechanisms of rice resistance to planthopper[J].Plant Cell Reports,35(8):1559-1572.doi: 10.1007/s00299-016-1962-6.

    Liu C X,Hao F H,Hu J,Zhang W L,Wan L L,Zhu L L,Tang H R,He G C.2010.Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis[J].Journal of Proteome Research,9(12):6774-6785.doi: 10.1021/pr100970q.

    Liu Q S,Hu X Y,Su S L,Ning Y S,Peng Y F,Ye G Y,Lou Y G,Turlings T C J,Li Y H.2021.Cooperative herbivory between two important pests of rice[J].Nature Communications,12(1):6772.doi: 10.1038/s41467-021-27021-0.

    Lu J,Ju H P,Zhou G X,Zhu C S,Erb M,Wang X P,Wang P,Lou Y G.2011.An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling,defense and resistance in rice[J].The Plant Journal,68(4):583-596.doi: 10.1111/j.1365-313x.2011.04709.x.

    Malenovsky I,Burckhardt D,Queiroz D L,Isaias R M S,Oliveira D C.2015.Descriptions of two new Pseudophacopteron species (Hemiptera:Psylloidea:Phacopteronidae) inducing galls on Aspidosperma (Apocynaceae) in Brazil[J].Acta Entomologica Musei Nationalis Pragae,55(2):513-538.

    Peng L,Zhao Y,Wang H Y Zhang J J,Song C P,Shangguan X X,Zhu L L,He G C.2016.Comparative metabolomics of the interaction between rice and the brown planthopper[J].Metabolomics,12(8):1-15.doi: 10.1007/s11306-016-1077-7.

    Shi S J,Wang H Y,Nie L Y,Tan D,Zhou C,Zhang Q,Li Y,Du B,Guo J P,Huang J,Wu D,Zheng X H,Guan W,Shan J H,Zhu L L,Chen R Z,Xue L J,Walling L L,He G C.2021.Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths[J].Molecular Plant,14(10):1714-1732.doi: 10.1016/j.molp.2021.07.004.

    Tong X H,Qi J F,Zhu X D,Mao B Z,Zeng L J,Wang B H,Li Q,Zhou G X,Xu X J,Lou Y G,He Z H.2012.The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway[J].The Plant Journal,71(5):763-775.doi: 10.1111/j.1365-313x.2012.05027.x.

    Wang Y Y,Wang X L,Yuan H Y,Chen R Z,Zhu L L,He RF,He G C.2008.Responses of two contrasting genotypes of rice to brown planthopper[J].Molecular PlantMicrobe Interactions,21(1):122-132.doi: 10.1094/mpmi-21-1-0122.

    Xu J,Wang X J,Zu H Y,Zeng X,Baldwin I T,Lou Y G,Li R.2021.Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore[J].New Phytologist,230(4):1639-1652.doi: 10.1111/nph.17251.

    Yuan H Y,Chen X P,Zhu L L,He G C.2005.Identification of genes responsive to brown planthopper Nilaparvata lugens Stål (Homoptera:Delphacidae) feeding in rice[J].Planta,221(1):105-112.doi: 10.1007/s00425-004-1422-3.

    Zhang F,Zhu L,He G C.2004.Differential gene expression in response to brown planthopper feeding in rice[J].Journal of Plant Physiology,161(1):53-62.doi: 10.1078/0176-1617-01179.

    Zhao Y,Huang J,Wang Z Z,Jing S L,Wang Y,Ouyang Y D,Cai B D,Xin X F,Liu X,Zhang C X,Pan Y F,Ma R,Li Q F,Jiang W H,Zeng Y,Shangguan X X,Wang H Y,Du B,Zhu L L,Xu X,Feng Y Q,He S Y,Chen R Z,Zhang Q F,He G C.2016.Allelic diversity in an NLRgene BPH9 enables rice to combat planthopper variation[J].Proceedings of the National Academy of Sciences,113(45):12850-12855.doi: 10.1073/pnas.1614862113.

    Zhou G X,Qi J F,Ren N,Cheng J A,Erb M,Mao B Z,Lou Y G.2009.Silencing OsHI-LOX makes rice more susceptible to chewing herbivores,but enhances resistance to a phloem feeder[J].The Plant Journal,60(4):638-648.doi: 10.1111/j.1365-313x.2009.03988.x.

  • 期刊类型引用(3)

    1. 党莉. 利用转录组分析揭示植物光合作用效率的分子机制. 农业灾害研究. 2024(09): 34-36 . 百度学术
    2. 蒋哲,范晓苏,曹振宇,周桂花,陈英之,莫怿,覃宝祥,邱永福. 水稻抗稻瘿蚊的离子组研究. 南方农业学报. 2023(02): 424-433 . 本站查看
    3. 王佳旭,李月婷,王艳秋,卢峰,张飞,王金阳,朱凯. 高粱抗蚜虫种质评价及抗性机理解析. 山西农业大学学报(自然科学版). 2023(06): 34-43 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  93
  • HTML全文浏览量:  4
  • PDF下载量:  6
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-01-15

目录

    /

    返回文章
    返回