Changes of leaf morphology during the occurrence of wrinkled leaves in southern soybean and its effects on yield traits
-
摘要: 【目的】研究南方大豆皱叶发生时叶片形态特征变化及皱叶对产量性状的影响,为明确皱叶对大豆叶片形态、农艺性状和产量相关性状的影响程度及揭示大豆皱叶发生机制提供数据支撑。【方法】利用皱叶症近杂合异质系材料GY_C (皱叶)和GY_N (正常),采用随机区组试验设计,研究大豆皱叶症级为4时,叶片形态、叶绿素含量、光合气体交换参数、农艺及产量相关性状的变化。【结果】皱叶发生后叶片主脉薄壁细胞、皱缩处叶片增厚,叶缘处叶片变薄。叶片皱缩处栅栏组织和海绵组织排列不规则,叶缘处出现多层薄壁细胞。皱叶发生时,大豆叶片鲜重和干重、叶柄鲜重和干重、叶柄长和粗、叶片长和宽、叶面积等形态指标均显著减少(P<0.05,下同)。皱叶的叶绿素含量分布不均,但对光合气体交换参数无显著影响(P>0.05)。大豆发生皱叶后成熟期平均提前3.33 d,茎秆变细,抗倒伏性变差,株高、底荚高、主茎节数等农艺性状也有减少趋势,但不同年份有所不同。皱叶导致大豆单株干物质重、单株荚数、单株粒数、单株粒重、百粒重等产量相关性状显著减少,GY_C较GY_N两年平均减产43.11%。皱叶发生时大豆籽粒蛋白含量有降低趋势、油分含量有增高趋势,但不同年份存在差异。【结论】南方大豆皱叶发生时形态上主要因叶缘不能正常伸展所致,皱叶(症级为4)发生后大豆叶面积减少,植株干物质积累变少,生育期缩短、抗倒伏性变差,严重影响单株粒重等产量相关性状。Abstract: 【Objective】To investigate the effects of crinkle leaf on soybean leaf morphology and yield in South China, which could assist to clarify the impact of crinkle leaf on leaf morphology,agronomic characters and yield-related characteristics of soybean and reveal the occurrence mechanism of soybean crinkle leaf in South China.【Method】A randomized block trial design was used to research effects on leaf morphology,chlorophyll content,photosynthetic gas exchange parameters,agronomic traits,yield and yield-related traits in two crinkle leaf heterozygous lines:GY_C(crinkle leaf line) and GY_N(normal line).【Result】After the occurrence of crinkle leaf,the parenchyma of the main vein and the wrinkle spaces of the crinkle leaves thickened,but spaces at the leaf edge became thinner. Palisade tissue and spongy tissue were arranged irregularly at the wrinkled spaces and multi-layer parenchyma cells appeared at the leaf margin. With crinkle leaf occurrence,morphological indexes such as the fresh and dry weights of soybean leaves and petioles,petiole length and thickness,leaf length and width,as well as the leaf area decreased significantly(P<0.05 the same below). The distribution of chlorophyll content in wrinkled leaves was uneven,but had no significant effect on photosynthetic gas exchange parameters(P>0.05). With the occurrence of crinkle leaf,soybean matured in 3.33 days on average than those without it. Stems became thinner,with a decrease in lodging resistance and the agronomic characters such as plant height,bottom pod height and the number of main stem nodes also tended to decrease. However,these differences varied in different years of observation. Crinkle leaf resulted in the reduction of yield-related traits such as plant dry weight,pod and seed numbers per plant,seed weight per plant and 100 seeds weight. The average yield of GY_C was 43.11% lower than that of normal leaf material from GY_N in two years. Seed protein content of the crinkle leaf material tended to decrease and the seed oil content tended to increase,but with variation in different years.【Conclusion】Morphologically,the main cause of soybean leaf wrinkle in South China is that the leaf margin cannot stretch normally. With the occurrence of wrinkled leaf,the soybean leaf area and the accumulation of plant dry matter decreases,with a shortening of the growth period and a decrease in lodging resistance. Crinkle leaf of soybean in South of China seriously affects the yield and yieldrelated traits such as grain weight.
-
Keywords:
- soybean /
- crinkle leaf /
- morphology /
- yield
-
-
陈文杰, 陈渊, 韦清源, 郭小红, 汤复跃, 叶万典, 杨萌, 梁江. 2020. 一种大豆皱叶症发生特性及材料症级鉴定[J]. 大豆科学, 39(3):431-441.[Chen W J, Chen Y, Wei Q Y, Guo X H, Tang F Y, Ye W D, Yang M, Liang J. 2020.Occurrence characteristics and identification of resistant materials for soybean crinkle leaf disease[J]. Soybean Science, 39 (3):431-441.]doi:10.11861/j.issn.1000-9841. 2020.03.0431. 陈文杰, 郭小红, 汤复跃, 韦清源, 陈渊, 梁江. 2017. 不同生育时期大豆叶片光合特性变化及相关性研究[J]. 中国油料作物学报, 39(3):360-365.[Chen W J, Guo X H, Tang F Y, Wei Q Y, Chen Y, Liang J. 2017. Changes and relationship of photosynthetic traits of soybean leaves at different growth stages[J]. Chinese Journal of Oil Crop Sciences, 39(3):360-365.]doi:10.7505/j.issn.1007-9084. 2017.03.010. 戴志聪, 杜道林, 司春灿, 林英, 郝建良, 孙凤. 2009. 用扫描仪及Image J软件精确测量叶片形态数量特征的方法[J]. 广西植物, 29(3):342-347.[Dai Z C, Du D L, Si C C, Lin Y, Hao J L, Sun F. 2009. A method to exactly measure the morphological quantity of leaf using scanner and Image J software[J]. Guihaia, 29(3):342-347.]doi:10. 3969/j.issn.1000-3142.2009.03.013. 杜维广, 张桂茹, 满为群, 栾晓燕, 陈怡, 谷秀芝. 1999. 大豆光合作用与产量关系的研究[J]. 大豆科学, 18(2):61-66.[Du W G, Zhang G R, Man W Q, Luan X Y, Chen Y, Gu X Z. 1999. Study on relationship between soybean photosynthesis and yield[J]. Soybean Science, 18(2):61-66.] 郭清云, 蒯婕, 汪波, 刘芳, 张椿雨, 李根泽, 张云云, 傅廷栋, 周广生. 2020. 感抗油菜近等基因系混播对根肿病发病率的影响[J]. 作物学报, 46(9):1408-1415.[Guo Q Y, Kuai J, Wang B, Liu F, Zhang C Y, Li G Z, Zhang Y Y, Fu T D, Zhou G S. 2020. Effect of mixed-sowing of nearisogenic lines on the clubroot disease controlling efficiency in rapeseed[J]. Acta Agronomica Sinica, 46(9):1408-1415.]doi: 10.3724/SP.J.1006.2020.04074. 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 2021. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 47(6):1188-1196.[Han Y Z, Zhang Y, Yang Y, Gu Z Z, Wu K, Xie Q, Kong Z X, Jia H Y, Ma Z Q. 2021. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat[J]. Acta Agronomica Sinica, 47 (6):1188-1196.]doi: 10.3724/SP.J.1006.2021.01053. 李学湛, Kim K S, Sctt H A. 1991. 复合病毒感染对大豆叶片细胞超微结构的影响[J]. 电子显微学报,(1):10-15.[Li X Z, Kim K S, Sctt H A. 1991. Ultrastructral affect of compound viruses infection to soybean leaf cells[J]. Journal of Chinese Electron Microscopy Society,(1):10-15.] 刘鹏, Yang Y S, 徐根娣, 朱申龙. 2004. 铝胁迫对大豆幼苗根系形态和生理特性的影响[J]. 中国油料作物学报, 26(4):51-56.[Liu P, Yang Y S, Xu G T, Zhu S L. 2004.The effect of aluminum stress on morphological and physiological characteristics of soybean root of seedling[J]. Chinese Journal of Oil Crop Sciences, 26(4):51-56.]doi: 10.3321/j.issn:1007-9084.2004.04.010. 刘萍, 董文汉, 王明君, 尹元萍, 董蓉娇, 张慧, 梁泉. 2018. 低磷胁迫条件下大豆磷高效近等基因系主要农艺性状分析[J]. 西南农业学报, 31(8):1553-1558.[Liu P, Dong W H, Wang M J, Yin Y P, Dong R J, Zhang H, Liang Q. 2018. Analysis of main agronomic characters of soybean inbred lines with high phosphorus efficient at low phosphorus conditions[J]. Southwest China Journal of Agricultural Sciences, 31 (8):1553-1558.]doi: 10.16213/j.cnki.scjas.2018.8.001. 刘晓庆, 陈华涛, 张红梅, 张智民, 陈新. 2017. 不同品种大豆幼苗对镉胁迫的响应[J]. 江西农业学报, 29(3):14-17.[Liu X Q, Chen H T, Zhang H M, Zhang Z M, Chen X. 2017. Response of seedlings of different soybean varieties to cadmium stress[J]. Jiangxi Agricultural Science, 29 (3):14-17.]doi: 10.19386/j.cnki.jxnyxb.2017.03.03. 刘志涛. 2014. 植物保健剂对大豆生长和产量以及大豆花叶病毒抗性的影响[D]. 南京:南京农业大学.[Liu Z T. 2014. Influence of plant health agents on soybean growth, yield and the resistance to soybean mosaic virus[D]. Nanjing:Nanjing Agricultural University.] 马娜, 栾鹤翔, 沈颖超, 赵琳, 刘志涛, 张锴, 王成坤, 智海剑. 2016. 大豆花叶病毒侵染大豆抗感近等基因系后叶片超微结构变化的比较[J]. 大豆科学, 35(2):280-284.[Ma N, Luan H X, Shen Y C, Zhao L, Liu Z T, Zhang K, Wang C K, Zhi H J. 2016. Cellular ultrastructure analysis in soybean resistant lines and susceptible lines of NILs infected by SMV[J]. Soybean Sciences, 35 (2):280-284.]doi: 10.11861/j.issn.1000-9841.2016.02.0280. 邱丽娟, 常汝镇. 2006. 大豆种质资源描述规范和数据标准[M]. 北京:中国农业出版社:69-73.[Qiu L J, Chang R Z. 2006. Descriptors and data standard for soybean(Glycine spp.)[M]. Beijing:China Agriculture Press:69-73.] 王大刚, 李凯, 智海剑. 2018. 大豆抗大豆花叶病毒病基因研究进展[J]. 中国农业科学, 51(16):3040-3059.[Wang D G, Li K, Zhi H J. 2018. Progresses of resistance on soybean mosaic virus in soybean[J]. Scientia Agricultura Sinica, 51(16):3040-3059.] doi:10.3864/j. issn. 0578-1752.2018.16.002. 杨虎彪, 李晓霞, 罗丽娟. 2009. 植物石蜡制片中透明和脱蜡技术的改良[J]. 植物学报, 44(2):230-235.[Yang H B, Li X X, Luo L J. 2009. An improved clearing and dewaxing method for plant paraffin sectioning[J]. Chinese Bulletin of Botany, 44(2):230-235.] doi: 10.3969/j.issn.1674-3466.2009.02.013. 张文献, 李增强, 胡亚丽, 梁志辰, 罗登杰, 卢海, 唐美琼, 陈鹏. 2020. 不同浓度磷胁迫对大豆幼苗生长及根系DNA 甲基化水平的影响[J]. 中国农业大学学报, 25(12):9-18.[Zhang W X, Li Z Q, Hu Y L, Liang Z C, Luo D J, Lu H, Tang M Q, Chen P. 2020. Effects of different concentrations of phosphorus stresses on soybean(Glycine max L.) seedling growth and DNA methylation in root system[J]. Journal of China Agricultural University, 25(12):9-18.]doi: 10.11841/j.issn.1007-4333.2020.12.02. 张宪政. 1986. 植物叶绿素含量测定——丙酮乙醇混合液法[J]. 辽宁农业科学,(3):26-38.[Zhang X Z. 1986. Determination of plant chlorophyll content-Acetone ethanol mixture method[J]. Liaoning Agricultural Sciences, (3):26-38.] 郑梦迪, 王春阳, 张寒, 张彦, 汪兴军. 2019. 植物叶缘和叶脉发育调控的研究进展[J]. 生物资源, 41(1):22-27.[Zheng M D, Wang C Y, Zhang H, Zhang Y, Wang X J. 2019. Advances in plant leaf margin and venation pattern regulation mechanism[J]. Biotic Resources, 41(1):22-27.]doi: 10.14188/j.ajsh.2019.01.004. Andersen S M, Clay S A, Wrage L J, Matthees D. 2004. Soy-bean foliage residues of dicamba and 2,4-D and correlation to application rates and yield[J]. Agronomy Journal, 96:750-760. doi: 10.2134/agronj2004.0750.
Asano T, Yoshioka Y, Kurei S, Sakamoto W, Machida Y, Sodmergen. 2004. A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis[J]. Plant Journal, 38 (3):448-459. doi:10.1111/j.1365-313X. 2004.02057.x.
Campos R E, Bejerman N, Nome C, Laguna I G, Pardina P R. 2014. Bean yellow mosaic virus in soybean from Argentina[J]. Journal of Phytopathology, 162(5):322-325. doi:10. 1111/jph.12185.
Chen Y L, Asano T, Fujiwara M T, Yoshida S, Machida Y, Yoshioka Y. 2009. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana[J]. Plant and Cell Physiology, 50(5):956-969.doi: 10.1093/pcp/pcp047.
Fehr W R, Caviness C E. 1977. Stages of soybean development. Special report 80, cooperative extension service, agriculture and home economic experiment station[M]. Iowa:Iowa State University:1-11.
Fishcher R A, Turner N C. 1978. Plant productivity in the arid and semiarid zones[J]. Annual Review of Plant Physiology, 29(1):277-317. doi:10.1146/annurev. pp. 29.060 178. 001425.
Kelley K B, Wax L M, Hager A G, Riechers D E. 2005. Soybean response to plant growth regulator herbicides is affected by other post emergence herbicides[J]. Weed Science, 53:101-112. doi: 10.1614/WS-04-078R.
Robinson A P, Simpson D M, Johnson W G. 2013. Response of glyphosate tolerant soybean yield components to dicamba exposure[J]. Weed Science, 61(4):526-536. doi: 10.1614/WS-D-12-00203.1.
Samertwanich K, Kertipakorn K, Chiemsombat P, Ikegami M. 2001. Complete nucleotide sequence and genome organization of soybean crinkle leaf virus[J]. Journal of phtopathology, 149:333-336. doi:10.1046/j.1439-0434.2001. 00629.x.
Santos E F, Santini J M K, Paixão A P, Júnior E F, Lavres J, Campos M, dos Reis A R. 2017. Physiological highlights of manganese toxicity symptoms in soybean plants:Mn toxicity responses[J]. Plant Physiology and Biochemistry, 113:6-19. doi:10.1016/j.plaphy. 2017.01.022.
Scholtes A B, Sperry B P, Reynolds D B, Irby J T, Eubank T W, Barber L T, Dodds D M. 2019. Effect of soybean growth stage on sensitivity to sublethal rates of dicamba and 2, 4-D[J]. Weed Technology, 33(4):555-561. doi: 10.1017/wet.2019.39.
Silva E D N, Aguiar A C M, Novello B D P, Silva Á A A, Basso C J. 2018. Rift of 2, 4-D and dicamba applied to soybean at vegetative and reproductive growth stage[J]. Ciencia Rural, 48(8):1-7. doi:10.1590/0103-8478cr2018 0179.
Šimková K, Kim C, Gacek K, Baruah A, Laloi C, Apel K. 2012. The chloroplast division mutant caa33 of Arabidopsis thaliana reveals the crucial impact of chloroplast homeostasis on stress acclimation and retrograde plastidto-nucleus signaling[J]. The Plant Journal:for Cell and Molecular Biology, 69(4):701-712. doi:10.1111/j.1365-313X.2011.0 4825.x.
Song X F, Wei H C, Cheng W, Yang S X, Zhao Y X, Li X, Luo D, Zhang H, Feng X Z. 2015. Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean[J]. Genes Genomes Genetics, 5 (12):2793-2799. doi:10.1534/g 3.115.022780.
Wang Y Q, Chen W, Zhang Y, Liu M F, Kong J J, Yu Z P, Jaffer A M, Gai J Y, Zhao T J. 2016. Identification of two duplicated loci controlling a disease-like rugose leaf phenotype in soybean[J]. Crop Science, 56(4):1611-1618. doi:10.2135/cropsci2015. 09.0580.
Weidenhamer J D, Triplett G B, Sobotka F E. 1989. Dicamba injury to soybeans[J]. Agronomy Journal, 81:637-643.doi: 10.2134/agronj1989.00021962008100040017x.
Yang X D, Niu L, Zhang W, He H L, Yang J, Xing G J, Guo D Q, Zhao Q Q, Zhong X F, Li H Y, Li Q Y, Dong Y S. 2019. Increased multiple virus resistance in transgenic soybean overexpressing the double-strand RNA-specific ribonuclease gene PAC1[J]. Transgenic Research, 28:129-140. doi: 10.1007/s11248-018-0108-8.
Zhu G J, Jiang G M, Hao N B, Liu H Q, Kong Z H, Du W G, Man W Q. 2002. Relationship between ecophysiological features and grain yield in different soybean varieties[J]. Acta Botanica Sinica, 44(6):725-730. doi: 10.1127/0340-269X/2002/0032-0317.
-
期刊类型引用(7)
1. 陈文杰,陈渊,韦清源,汤复跃,郭小红,梁江. 南方土壤中导致大豆皱叶的因子分析. 大豆科学. 2024(02): 167-175 . 百度学术
2. 安露西,钱春桃,地力下提·吐尔逊,刘照坤,王欢,周俊. 四倍体香青菜的创制及其综合鉴定. 特种经济动植物. 2024(04): 11-15 . 百度学术
3. 陈文杰,陈渊,韦清源,汤复跃,郭小红,陈淑芳,覃夏燕,韦荣昌,梁江. 利用高世代转录组测序挖掘控制南方大豆皱叶症候选基因. 中国农业科学. 2024(15): 2914-2930 . 百度学术
4. 谢波艳,孔丽静,赵文君,苏书乐,张赛,张煜彬,孙成龙,赵思源,张明慧,范圣此,向增旭,郑金双. 基于形态性状和SSR标记的140份北苍术种质多样性分析. 江苏农业学报. 2024(09): 1607-1616 . 百度学术
5. 陈文杰,梁江,韦清源,汤复跃,郭小红,陈渊. 基于转录组测序的辅助鉴定南方大豆皱叶症分子标记开发. 南方农业学报. 2023(06): 1587-1597 . 本站查看
6. 宋莹,张咪,张昌伟,李英,侯喜林,王建军,刘照坤,刘同坤. 高产、抗病同源四倍体不结球白菜黄心乌新材料的创制. 核农学报. 2022(07): 1285-1292 . 百度学术
7. 伍峥,洪明伟,杨荣萍,郭世泽,唐天睿,杨慧,王梦圆,李艳菊,彭冬,杨学虎. 光碳核肥处理‘茂谷柑’冠层内CO_2浓度变化特征与叶片生理响应研究. 西南农业学报. 2022(12): 2780-2787 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 46
- HTML全文浏览量: 3
- PDF下载量: 6
- 被引次数: 11