育成期高能饲喂下开产与未开产蛋鸡肝脏miRNA表达谱差异分析

王星果, 王克华, 卢建, 马猛, 窦套存, 郭军, 胡玉萍, 曲亮

王星果, 王克华, 卢建, 马猛, 窦套存, 郭军, 胡玉萍, 曲亮. 2022: 育成期高能饲喂下开产与未开产蛋鸡肝脏miRNA表达谱差异分析. 南方农业学报, 53(2): 277-286. DOI: 10.3969/j.issn.2095-1191.2022.02.001
引用本文: 王星果, 王克华, 卢建, 马猛, 窦套存, 郭军, 胡玉萍, 曲亮. 2022: 育成期高能饲喂下开产与未开产蛋鸡肝脏miRNA表达谱差异分析. 南方农业学报, 53(2): 277-286. DOI: 10.3969/j.issn.2095-1191.2022.02.001
WANG Xing-guo, WANG Ke-hua, LU Jian, MA Meng, DOU Tao-cun, GUO Jun, HU Yu-ping, QU Liang. 2022: Liver miRNA profiles of laying hens before and after reaching sexual maturity with a high energy feed during the maturation period. Journal of Southern Agriculture, 53(2): 277-286. DOI: 10.3969/j.issn.2095-1191.2022.02.001
Citation: WANG Xing-guo, WANG Ke-hua, LU Jian, MA Meng, DOU Tao-cun, GUO Jun, HU Yu-ping, QU Liang. 2022: Liver miRNA profiles of laying hens before and after reaching sexual maturity with a high energy feed during the maturation period. Journal of Southern Agriculture, 53(2): 277-286. DOI: 10.3969/j.issn.2095-1191.2022.02.001

育成期高能饲喂下开产与未开产蛋鸡肝脏miRNA表达谱差异分析

基金项目: 

江苏省农业重大新品种创制项目(PZCZ201729);江苏省种业振兴揭榜挂帅项目(JBGS[2021]104);现代农业产业技术体系建设专项(CARS-40-K01);扬州市科技计划项目(YZ2021030)

详细信息
    作者简介:

    王星果(1984-),https://orcid.org/0000-0003-0554-2346,博士,副研究员,主要从事蛋鸡遗传育种及脂质代谢研究工作,E-mail:yzwangxingguo@163.com

    通讯作者:

    曲亮(1982-),https://orcid.org/0000-0003-0785-3324,博士,副研究员,主要从事蛋鸡遗传育种研究工作,E-mail:676542516@qq.com

  • 中图分类号: S831.1

Liver miRNA profiles of laying hens before and after reaching sexual maturity with a high energy feed during the maturation period

Funds: 

Agricultural Major New Breed Creation of Jiangsu Province(PZCZ201729);Recruit of Seed Industry Revitalization of Jiangsu Province(JBGS[2021] 104);Special Construction of China Agriculture Research System (CARS-40-K01); Science and Technology Project of Yangzhou(YZ2021030)

  • 摘要: 【目的】对育成期高能饲喂下开产与未开产蛋鸡的肝脏进行miRNA高通量测序分析,探明高能饮食状态下蛋鸡肝脏中影响其开产的miRNA,为提高产蛋性能打下基础。【方法】以代谢能水平为12.14 MJ/kg的高能饲粮饲喂育成期蛋鸡,通过Illumina NextSeq500高通量测序平台对开产与未开产蛋鸡肝脏进行small RNA测序,使用DESeq分析miRNA表达量,并以实时荧光定量PCR进行验证;采用miRanda对差异表达miRNA进行靶基因和靶位点预测,同时以超几何分布对差异表达的靶基因进行GO功能注释分析和KEGG信号通路富集分析。【结果】 6个样本(3个开产蛋鸡样本,3个未开产蛋鸡样本)能注释到的miRNA均超过300个,约占miRBase中已鉴定鸡miRNA的30.00%,且前体鉴定结果显示各样本注释到的miRNA有部分定位在同一前体上。与未开产组样本相比,开产组样本有9个miRNA表达上调、3个miRNA表达下调。其中,gga-miR-132c-5p、gga-miR-132b-5p、gga-miR-2184a-5p、gga-miR-132c-3p、gga-miR-132b-3p及gga-miR-2184a-3p属于同一miRNA基因簇,且gga-miR-1682、gga-miR-132b-3p和gga-miR-2184a-3p等3个上调miRNA在未开产蛋鸡样本中不表达。通过miRanda共预测得到129个差异表达潜在靶基因,以miR-203a预测得到的靶基因最多,为32个;其次是gga-miR-2184a-5p、gga-miR-148a-5p和gga-miR-12211-5p,分别预测到30、25和23个靶基因;而miR-132c-5p预测得到的靶基因最少,仅为9个。129个靶基因显著注释到8条GO功能条目上,生物学过程(Biological process)主要注释到脂质代谢过程、细胞脂质代谢过程、脂质生物合成过程、磷脂生物合成过程、磷脂代谢过程、甘油磷脂生物合成过程和解剖学结构发育,分子功能(Molecular funcion)仅注释到1条GO功能条目,即利钠肽受体活性,未发现涉及细胞组分(Cellular component)的GO功能条目;在注释到的8条GO功能条目中有6条与脂质代谢相关,涉及的靶基因有22个,占总潜在靶基因的17.10%。KEGG信号通路富集分析结果显示共显著富集到7条KEGG信号通路,其中脂肪酸降解、脂肪酸生物合成、酮体合成与降解及PPAR信号通路等4条信号通路与脂质代谢相关。【结论】育成期高能饲喂下开产与未开产蛋鸡中共存在12个差异表达miRNA,涉及129个差异表达潜在靶基因,且主要富集在肝脏脂质代谢相关过程和信号通路,说明miRNA是通过调控脂质代谢及其相关基因表达而影响蛋鸡开产。
    Abstract: 【Objective】In the current study,the liver miRNA profiles of sexually immature and sexually mature laying hens fed with a high energy feed during the maturation period were compared to clarify which liver miRNAs in liver influenced sexual maturity with high energy feed. The study laid a foundation for improving egg production.【Method】High-energy feed with 12.14 MJ/kg metabolic energy was used to feed laying hens during the maturation period. Liver miRNAs were detected by small RNA sequencing with the Illumina NextSeq500 platform in sexually mature (R) and sexually immature(N) laying hens. miRNA expression was analyzed using the bioinformatics software DESeq and validated using qRT-PCR. Target genes and target sites of differentially expressed miRNAs were predicted by miRanda and the differentially targeted genes were analyzed for GO and KEGG enrichment using a hypergeometric distribution.【Result】More than 300 miRNAs could be annotated in each of the 6 samples(3 R and 3 N),accounting for about 30.00% of the identified chicken miRNAs in miRBase. The results from precursor identification showed that some annotated miRNAs in each sample were located on the same precursor. Compared with the N group,the expression levels of 9 miRNAs in the R group were up-regulated and 3 miRNAs were down-regulated,among which gga-miR-132c-5p,gga-miR-132b-5p, gga-miR-2184a-5p,gga-miR-132c-3p,gga-miR-132b-3p and gga-miR-2184a-3p were in a miRNA cluster. In addition,3 upregulated miRNAs in the R group,including gga-miR-1682,gga-miR-132b-3p and gga-miR-2184a-3p,were not expressed in the N group. A total of 129 target genes of the differentially expressed genes were predicted by miRanda. The number of target genes predicted for gga-miR-203a was the highest(32), gga-miR-2184a-5p,gga-miR-148a-5p and ggamiR-12211-5p showed a smaller number(30,25 and 23,respectively) and miR-132c-5p the lowest(only 9). GO analysis of the 129 differentially targeted genes showed that there were 8 significantly enriched GO terms,including 7 biological processes:lipid metabolism,cellular lipid metabolism,lipid biosynthesis,phospholipid biosynthesis,phospholipid metabolism,glycerophospholipid biosynthesis and anatomical structure development. No cellular component terms were found and only 1 molecular function term was detected:natriuretic peptide receptor activity. In the 8 enriched GO items,6 were related to lipid metabolism,and 22 target genes were involved,accounting for 17.10% of the 129 genes. KEGG analysis showed that there were 7 significant enriched KEGG terms,of which fatty acid degradation,fatty acid biosynthesis,synthesis and degradation of ketone bodies and PPAR signaling pathway were related to lipid metabolism.【Conclusion】A total of 12 miRNAs are differentially expressed between sexually immature and sexually mature laying hens under a high energy feeding regime during the maturation period,involving 129 potential differentially expressed genes,which are mainly enriched in processes and pathways related to lipid metabolism in the liver. The data suggests that miRNAs affect sexual maturity of laying hens by regulating lipid metabolism and related genes.
  • 陈兴勇, 赵宁, 张燕, 耿照玉. 2017. 皖西白鹅育肥期肌肉脂肪酸组成及肝PPARα、FADS2和ME1基因表达规律的研究[J]. 畜牧兽医学报, 48(10):1912-1919.[Chen X Y, Zhao N, Zhang Y, Geng Z Y. 2017. The fatty acid profile in muscles and expression of PPARa, FADS2 and ME1 genes in liver of Chinese Wanxi white geese in fattening period[J]. Acta Veterinaria et Zootechnica Sinica,48(10):1912-1919.]doi:10.11843/j.issn.0366-6964.2017. 10.014.
    方书宝, 彭箫, 王梦霖, 赵晓钰, 王俊花, 吴盈萍, 段玉青, 李海英. 2020. 饲粮能量水平对京红蛋鸡产蛋后期生产性能、蛋品质及脂代谢的影响[J]. 饲料工业, 41(7):44-49.[Fang S B, Peng X, Wang M L, Zhao X Y, Wang J H, Wu Y P, Duan Y Q, Li H Y. 2020. Effects of dietary energy level on production performance, egg quality and lipid metabolism of Jinghong layers in late laying period[J]. Feed Industry, 41(7):44-49.]doi: 10.13302/j.cnki.fi.2020.07.008.
    费强. 2013. 蛋鸡产蛋性能下降的原因及对策[J]. 家禽科学, (2):32-33.[Fei Q. 2013. Reasons and strategies of performance decrease of laying hens[J]. Poultry Science, (2):32-33.]doi: 10.3969/j.issn.1673-1085.2013.02.010.
    李崇奇, 沈文涛, 言普, 黎小瑛, 周鹏. 2014. 巨桉miRNA及其靶基因生物信息学预测[J]. 南方农业学报, 45 (9):1532-1538.[Li C Q, Shen W T, Yan P, Li X Y, Zhou P. 2014. Bioinformatic analysis of microRNA and their target genes in Eucalyptus grandis[J]. Journal of Southern Agriculture, 45 (9):1532-1538.]doi:10.3969/j.issn.2095-1191. 2014.9.1532.
    李飞翔, 王文建, 卞红星, 蒋辉胜. 2017. 蛋鸡饲养管理及营养方面存在的误区[J]. 中国禽业导刊, 34(13):65.[Li F X, Wang W J, Bian H X, Jiang H S. 2017. Errors in management and nutrition of laying hens[J]. Guide to Chinese Poultry, 34 (13):65.]
    李红. 2016. 转录组分析揭示鸡产蛋期肝脏脂质代谢调控的分子机制[D]. 郑州:河南农业大学.[Li H. 2016. Tanscriptome analysis reveals the molecular mechanism of hepatic lipid metabolism regulation in egg-laying hen[D]. Zhengzhou:Henan Agricultural University.]
    李慧锋, 张臻, 朱文进, 张同玉, 郭文婕, 蔡永强, 朱芷葳, 张利环. 2017. 白来航蛋鸡产蛋前后肝转录组功能分析[J]. 畜牧兽医学报, 48(9):1624-1634.[Li H F, Zhang Z, Zhu W J, Zhang T Y, Guo W J, Cai Y Q, Zhu Z W, Zhang L H. 2017. Functional analysis of liver transcriptome before and after White Leghorn hen begin laying eggs[J]. Acta Veterinaria et Zootechnica Sinica, 48(9):1624-1634.]doi: 10.11843/j.issn.0366-6964.2017.09.007.
    李娜, 徐廷生, 雷雪芹, 刘宁, 文凤云, 吴秋珏, 高灵照. 2019.卢氏绿壳蛋鸡育成期适宜能量水平的研究[J]. 中国农学通报, 35 (5):154-159.[Li N, Xu T S, Lei X Q, Liu N, Wen F Y, Wu Q J, Gao L Z. 2019. Appropriate energy level for Lushi green-shell egg laying pullets during growing period[J]. Chinese Agricultural Science Bulletin, 35(5):154-159.]doi:10.11924/j.issn.1000-6850.casb18 010034.
    李永峰. 2017. 育成期能量摄入量对苏禽绿壳蛋鸡母本早期蛋用性能的影响[D]. 北京:中国农业科学院.[Li Y F. 2017. The impact of energy intake during growing period on early laying performance of Suqin green eggshell layer female parent[D]. Beijing:Chinese Academy of Agricultural Sciences.]
    刘振. 2016. 饲粮类型对鸡脂肪肝形成的影响及表观调控机制[D]. 北京:中国农业科学院.[Liu Z. 2016. Study of the effect of diets type on fatty liver syndrome in chicken and the underlying epigenetic mechanisms in chicken[D]. Beijing:Chinese Academy of Agricultural Sciences.]
    孙瑞萍, 王峰, 晁哲, 刘海隆, 郑心力, 刘圈炜, 黄丽丽, 邢漫萍, 魏立民. 2020. 1月龄五指山猪与长白猪骨骼肌miRNA转录组比较[J]. 江苏农业学报, 36(3):620-625.[Sun R P, Wang F, Chao Z, Liu H L, Zheng X L, Liu Q W, Huang L L, Xing M P, Wei L M. 2020. Comparative analysis on miRNA transcriptomes of skeletal muscle between one-month-old Wuzhishan pig and Landrace[J]. Jiangsu Journal of Agricultural Sciences,36(3):620-625.]doi: 10.3969/j.issn.10000-4440.2020.03.013.
    王璟, 白献晓, 张家庆, 高彬文, 陈俊峰, 高原, 任巧玲, 马强, 郭红霞, 梁永红, 邢宝松. 2016. 去势对淮南猪皮下脂肪PPAR信号通路基因表达量的影响[J]. 华北农学报, 31(2):92-97.[Wang J, Bai X X, Zhang J Q, Gao B W, Chen J F, Gao Y, Ren Q L, Ma Q, Guo H X, Liang Y H, Xing B S. 2016. Effect of castration on PPAR signal pathway expression in Huainan pig subcutaneous fat tissue[J]. Acta Agriculturae Boreali-Sinica, 31(2):92-97.]doi: 10.7668/hbnxb.2016.02.016.
    王星果, 卢建, 关树勇, 曲亮, 孙平江, 郭军, 胡玉萍, 窦套存, 马猛, 李永峰, 王克华. 2021. 高能饲粮对育成期蛋鸡肝脏miRNA表达谱的影响[J]. 动物营养学报, 33(2):1081-1090.[Wang X G, Lu J, Guan S Y, Qu L, Sun P J, Guo J, Hu Y P, Dou T C, Ma M, Li Y F, Wang K H. 2021. Effect of high energy diet on liver miRNAs of laying hens during growing period[J]. Chinese Journal of Animal Nutrition, 33(2):1081-1090.]doi:10.3969/j.issn. 1006-267x.2021.02.048.
    王星果, 曲亮, 窦套存, 郭军, 胡玉萍, 马猛, 李永峰, 王克华. 2020. 育成期高能饮食对蛋鸡肝脏转录组的影响[J]. 南方农业学报, 51(8):1864-1871.[Wang X G, Qu L, Dou T C, Guo J, Hu Y P, Ma M, Li Y F, Wang K H. 2020. Effects of high energy diet on liver transcriptome of laying hens during growing period[J]. Journal of Southern Agriculture, 51 (8):1864-1871.]doi:10.3969/j.issn.2095-1191. 2020.08.010.
    王延莉, 曹阳, 梁祎凡, 肖成, 金花子, 金海国. 2019. 乙酰辅酶A酰基转移酶1基因研究进展[J]. 中国畜牧杂志, 55(10):42-46.[Wang Y L, Cao Y, Liang Y F, Xiao C, Jin H Z, Jin H G. 2019. Advance in acetyl-CoA acyltransferase 1 gene[J]. Chinese Journal of Animal Science, 55(10):42-46.]doi: 10.19556/j.0258-7033.20190115-05.
    谢冬微, 孙健. 2020. 不同发育时期亚麻茎秆中木质素积累相关miRNA及其靶基因的挖掘分析[J]. 南方农业学报, 51(10):2321-2330.[Xie D W, Sun J. 2020. Mining and analysis of miRNAs and target genes related to lignin accumulation in flax stalks at different developmental stages[J]. Journal of Southern Agriculture, 51 (10):2321-2330.] doi: 10.3969/j.issn.2095-1191.2020.10.002.
    闫尊强, 姜天团, 孙文阳, 王鹏飞, 黄晓宇, 杨巧丽, 胡慧艳, 李守湖, 滚双宝. 2020. 环状RNA及其在猪上的研究进展[J]. 甘肃农业大学学报, 55(6):1-9.[Yan Z Q, Jiang T T, Sun W Y, Wang P F, Huang X Y, Yang Q L, Hu H Y, Li S H, Gun S B. 2020. Circular RNA and its research progress in pig[J]. Journal of Gansu Agricultural University, 55 (6):1-9.]doi: 10.13432/j.cnki.jgsau.2020.06.001.
    姚俊峰, 王晓亮, 黄红梅, 张飞, 涂盈盈, 杨长锁. 2016. 复合矿物质添加剂对蛋鸡生产性能及蛋品质的影响[J]. 中国家禽, 38(24):58-59.[Yao J F, Wang X L, Huang H M, Zhang F, Tu Y Y, Yang C S. 2016. Effects of compound mineral additives on production performance and egg quality of laying hens[J]. China Poultry, 38(24):58-59.] doi: 10.16372/j.issn.1004-6364.2016.24.013.
    于小飞. 2020. 蛋鸡自配饲料的能量调控[J]. 当代畜禽养殖业,(5):8-9.[Yu X F. 2020. Energy regulation of laying hens by self mixed feed[J]. Modern Livestock and Poultry Breeding Industry,(5):8-9.]doi: 10.3969/j.issn.1005-5959.2020.05.003.
    袁超, 徐志刚, 蒋媛婧, 严华祥, 马婷, 邹晓庭. 2013. 新杨绿壳蛋鸡育成期能量和蛋白质的需要量[J]. 动物营养学报, 25(4):735-742.[Yuan C, Xu Z G, Jiang Y J, Yan H X, Ma T, Zou X T. 2013. Energy and protein requirements of growing Xinyang green shell hens[J]. Chinese Journal of Animal Nutrition, 25(4):735-742.]doi: 10.3969/j.issn.1006-67x.2013.04.010.
    张金伟. 2009. 能量来源对产蛋鸡肝脏脂肪代谢的影响及其机制研究[D]. 雅安:四川农业大学.[Zhang J W. 2009. Effects of dietary energy sources on lipid metabolism and deposition in the liver of laying hens[D]. Ya' an:Sichuan Agricultural University.]
    张李俊, 魏清宇, 叶红心, 李温. 2005. 育成期白壳蛋鸡不同能量饲料的试验[J]. 养禽与禽病防治,(11):4-5.[Zhang L J, Wei Q Y, Ye H X, Li W. 2005. Experiment on white shell layer fed by different energy feed during growing period[J]. Poultry Husbandry and Disease Control,(11):4-5.]
    张利敏, 姚军虎, 董延. 2012. 产蛋鸡粗蛋白质与代谢能需要量研究进展与应用[J]. 饲料工业, 33(3):13-16.[Zhang L M, Yao J H, Dong Y. 2012. Research progress and application on crude protein and metabolic energy requirement in laying hens[J]. Feed Industry, 33(3):13-16.] doi: 10.3969/j.issn.1001-991X.2012.03.004.
    张晓怡, 马秋刚, 计成, 赵丽红, 张建云. 2019. 日粮代谢能水平对 "京粉1号" 蛋鸡产蛋高峰期生产性能的影响[J]. 中国畜牧杂志, 55(7):128-131.[Zhang X Y, Ma Q G, Ji C, Zhao L H, Zhang J Y. 2019. Effects of dietary metabolizable energy level on production performance of Jingfen No.1 laying hens during peak laying period[J]. Chinese Journal of Animal Science, 55(7):128-131.]doi: 10.19556/j.0258-7033.2019-07-128.
    赵振福, 曲长海. 2009. 维生素在蛋鸡生产中的应用[J]. 养殖技术顾问,(4):42.[Zhao Z F, Qu C H. 2009. Application of vitamin in laying hen production[J]. Technical Advisor for Animal Husbandry,(4):42.]doi: 10.3969/j.issn.1673-1921.2009.04.041.
    郑瑞, 王馨悦, 马秋刚, 赵丽红, 计成, 张建云. 2017. 日粮代谢能水平对 "京红1号" 商品代蛋鸡育成期(10~16周龄)生长性能的影响[J]. 饲料研究,(23):24-27.[Zheng R, Wang X Y, Ma Q G, Zhao L H, Ji C, Zhang J Y. 2017. Effects of dietary metabolizable energy level on growth performance of Jinghong No. 1 laying hens during gro-wing period(10-16 Weeks)[J]. Feed Research,(23):24-27.]doi: 10.13557/j.cnki.issn1002-2813.2017.23.006.

    Chen Y L, Wan S M, Li Q, Dong X R, Diao J, Liao Q, Wang G Y, Gao Z X. 2021. Genome-wide integrated analysis revealed functions of incRNA-miRNA-mRNA interaction in growth of intermuscular bones in Megalobrama amblycephala[J]. Frontiers in Cell and Developmental Biology, 8:603815. doi: 10.3389/fcell.2020.603815.

    Flores R, Jin X T, Chang J, Zhang C, Cogan D G, Schaefer E J, Kruth H S. 2019. LCAT, ApoD, and ApoA1 expression and review of cholesterol deposition in the cornea[J]. Biomolecules, 9 (12):785. doi: 10.3390/biom9120785.

    Guo L P, Cui H X, Zhao G P, Liu R R, Li Q H, Zheng M Q, Guo Y M, Jie W. 2018. Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens[J]. BMC Genomics, 19 (1):838. doi: 10.1186/s12864-018-5209-5.

    Li H, Ma Z, Jia L J, Li Y M, Xu C L, Wang T A, Han R L, Jiang R R, Li Z J, Sun G R, Kang X T, Liu X J. 2016. Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism[J]. Scientific Reports, 6:31766. doi: 10.1038/srep31766.

    Li T T, Li X D, Meng H Y, Chen L L, Meng F B. 2020. ACSL1 affects triglyceride levels through the PPARγ pathway[J]. International Journal of Medical Sciences, 17(6):720-727. doi: 10.7150/ijms.42248.

    Li Y F, Chen Y, Jin W J, Fu S Y, Li D H, Zhang Y H, Sun G R, Jiang R R, Han R L, Li Z J, Kang X T, Li G X. 2019. Analyses of microRNA and mRNA expression profiles reveal the crucial interaction networks and pathways for regulation of chicken breast muscle development[J]. Frontiers in Genetics, 10:197. doi: 10.3389/fgene.2019.00197.

    Nersisyan S, Shkurnikov M, Turchinovich A, Knyazev E, Tonevitsky A. 2020. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2[J]. PLoS One, 15 (7):e0235987. doi: 10.1371/journal.pone.0235987.

    Otsuka H, Kimura T, Ago Y, Nakama M, Aoyama Y, Abdelkreem E, Matsumoto H, Ohnoshi H, Sasai H, Osawa M, Yamaguchi S, Mitchell G A, Fukao T. 2020. Deficiency of 3-hydroxybutyrate dehydrogenase(BDH1) in mice causes low ketone body levels and fatty liver during fasting[J]. Journal of Inherited Metabolic Disease, 43(5):960-968. doi: 10.1002/jimd.12243.

    Perveen S, Ashfaq H, Shahjahan M, Manzoor A, Tayyeb A. 2020. Citrullus colocynthis regulates de novo lipid biosynthesis in human breast cancer cells[J]. Journal of Cancer Research and Therapeutics, 16(6):1294-1301. doi:10. 4103/jcrt.JCRT_206_20.

    Schutte J B, van Weerden E J. 1978. Requirement of the hen for sulphur-containing amino acids[J]. British Poultry Science, 19(5):573-581. doi:10.1080/0007166780841 6516.

    Shao F, Wang X, Yu J, Shen K, Qi C, Gu Z. 2019. Expression of miR-33 from an SREBP2 intron inhibits the expression of the fatty acid oxidation-regulatory genes CROT and HADHB in chicken liver[J]. British Poultry Science, 60 (2):115-124. doi: 10.1080/00071668.2018.1564242.

    Siersbæk R, Nielsen R, Mandrup S. 2010. PPARɤ in adipocyte differentiation and metabolism-Novel insights from genome-wide studies[J]. FEBS Letter, 584(15):3242-3249. doi: 10.1016/j.febslet.2010.06.010.

    Song P Y, Yue Q X, Fu Q, Li X Y, Li X J, Zhou R Y, Chen XY,Tao C Y. 2021. Integrated analysis of miRNAmRNA interaction in ovaries of Turpan black sheep during follicular and luteal phases[J]. Reproduction in Domestic Animals, 56 (1):46-57. doi: 10.1111/rda.13848.

    Wang X G, Li Y F, Qu L, Guo J, Dou T C, Hu Y P, Ma M, Wang K H. 2021. Lipolytic gene DAGLA is targeted by miR-223 in chicken hepatocytes[J]. Gene, 767:145184. doi: 10.1016/j.gene.2020.145184.

    Wang X G, Shao F, Yu J F, Jiang H L, Gong D Q, Gu Z L. 2015. microRNA-122 targets genes related to liver metabolism in chickens[J]. Comparative Biochemistry and Physiololy. Part B:Biochemistry and Molecular Biology, 184:29-35. doi: 10.1016/j.cbpb.2015.02.002.

    Wang X G, Yang L, Wang H J, Shao F, Yu J F, Jiang H L, Han Y P, Gong D P, Gu Z L. 2014. Growth hormone-regulated mRNAs and miRNAs in chicken hepatocytes[J]. PLoS One, 9(11):e112896. doi:10.1371/journal. pone. 0112896.

    Wang X G, Yu J F, Shao F, Zhang Y P, Li Y Y, Lu X Y, Gong D Q, Gu Z L. 2019. microRNA-122 targets the P4HA1 mRNA and regulates its expression in chicken hepatocytes[J]. Italian Journal of Animal Science, 18 (1):587-593. doi: 10.1080/1828051X.2018.1548912.

    Yu N, Yong S, Kim H K, Choi Y L, Jung Y, Kim D, Seo J, Lee Y E, Baek D, Lee J, Lee S, Lee J E, Kim J, Kim J, Lee S. 2019. Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma[J]. Molecular Oncology, 13(6):1356-1368. doi: 10.1002/1878-0261.12478.

  • 期刊类型引用(2)

    1. 李永峰,王星果,邵丹,王强,曲亮,童海兵. miRNA调控鸡脂质代谢研究进展. 中国畜牧杂志. 2025(01): 15-22 . 百度学术
    2. 施艳燕,段俊保,欧正淼,周杰珑,陈粉粉. 基于RNA-seq的无量山乌骨鸡(Gallus gallus)肝脏脂代谢相关miRNAs的筛选. 基因组学与应用生物学. 2024(01): 78-90 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  135
  • HTML全文浏览量:  5
  • PDF下载量:  10
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-05-08

目录

    /

    返回文章
    返回