不同轮作模式对马铃薯根际土壤真菌群落的影响

姚姿婷, 杨炎昌, 姚潇, 何团, 郑虚, 蒙炎成, 邹承武

姚姿婷, 杨炎昌, 姚潇, 何团, 郑虚, 蒙炎成, 邹承武. 2021: 不同轮作模式对马铃薯根际土壤真菌群落的影响. 南方农业学报, 52(5): 1255-1262. DOI: 10.3969/j.issn.2095-1191.2021.05.015
引用本文: 姚姿婷, 杨炎昌, 姚潇, 何团, 郑虚, 蒙炎成, 邹承武. 2021: 不同轮作模式对马铃薯根际土壤真菌群落的影响. 南方农业学报, 52(5): 1255-1262. DOI: 10.3969/j.issn.2095-1191.2021.05.015
YAO Zi-ting, YANG Yan-chang, YAO Xiao, HE Tuan, ZHENG Xu, MENG Yan-cheng, ZOU Cheng-wu. 2021: Effects of different crop rotation modes on fungal community in potato rhizosphere soil. Journal of Southern Agriculture, 52(5): 1255-1262. DOI: 10.3969/j.issn.2095-1191.2021.05.015
Citation: YAO Zi-ting, YANG Yan-chang, YAO Xiao, HE Tuan, ZHENG Xu, MENG Yan-cheng, ZOU Cheng-wu. 2021: Effects of different crop rotation modes on fungal community in potato rhizosphere soil. Journal of Southern Agriculture, 52(5): 1255-1262. DOI: 10.3969/j.issn.2095-1191.2021.05.015

不同轮作模式对马铃薯根际土壤真菌群落的影响

基金项目: 

广西创新驱动发展专项(科技重大专项)(桂科AA17204054);广西博士后专项(BH2018065)

详细信息
    作者简介:

    姚姿婷(1983-),https://orcid.org/0000-0001-5780-338X,博士,主要从事植物病原微生物研究工作,E-mail:youziting@163.com

    通讯作者:

    蒙炎成(1962-),https://orcid.org/0000-0002-5670-6366,副研究员,主要从事土壤微生物研究工作,E-mail:mych@gxaas.net

    邹承武(1983-),https://orcid.org/0000-0002-2836-2930,博士,主要从事分子植物病理学研究工作,E-mail:zouchengwu@gxu.edu.cn

  • 中图分类号: S344.17;S532

Effects of different crop rotation modes on fungal community in potato rhizosphere soil

Funds: 

Guangxi Innovation Driven Development Project(Science Key Project)(Guike AA17204054)

  • 摘要: 【目的】揭示不同轮作模式对马铃薯根际土壤真菌群落的影响,为土壤健康管理及维持马铃薯可持续生产提供科学依据。【方法】分别对旱地轮作和水旱轮作模式下的马铃薯健康植株及发生细菌性软腐病植株的根际土壤样品进行采集,将旱地轮作和水旱轮作模式下健康植株根际土壤样品分别记为HD.J和SH.J,将旱地轮作和水旱轮作模式下发生细菌性软腐病植株根际土壤样品分别记为HD.B和SH.B。利用Illumina高通量测序平台,分析真菌核糖体DNA内转录间隔区1(ITS1)的序列,比较在2种轮作模式下马铃薯根际土壤真菌群落特征的差异。【结果】马铃薯健康植株的根际土壤真菌群落组成和多样性特征在2种轮作模式下相似,主坐标分析也显示HD.J和SH.J的距离很接近。HD.J和SH.J在门水平已知的真菌类群中均以子囊菌门和担子菌门为优势菌门,子囊菌门的相对丰度分别为33.0%和30.0%,担子菌门的相对丰度分别为3.8%和9.6%;HD.J和SH.J的门水平未知真菌丰度分别为63.0%和60.0%。HD.J和SH.J的共有优势目是子囊菌门的肉座菌目、柔膜菌目、格孢腔菌目和粪壳菌目及担子菌门的伞菌目,推测是马铃薯根际土壤真菌群落的核心类群。2种轮作模式下的马铃薯根际土壤真菌群落Alpha多样性依次为HD.B>;SH.J>;HD.J>;SH.B。HD.B和SH.B中担子菌门的相对丰度明显高于HD.J和SH.J,其中SH.B中担子菌门的地星目真菌丰度高达82.8%,HD.B中担子菌门的银耳目丰度为18.6%;HD.B中还有2个优势属分别是可引起马铃薯黄萎病的轮枝孢属和引起水稻菌核杆腐病的双曲孢属,丰度分别为6.8%和5.9%。通过比对FUNGuild数据库预测根际土壤真菌营养型,发现HD.J只有病原营养型真菌相对丰度较高(20.6%),HD.B的病原营养型真菌、腐生营养型真菌和病原—腐生—共生营养型真菌的相对丰度分别为15.4%、18.8%和21.4%;SH.J和SH.B的腐生营养型真菌相对丰度分别为28.2%和10.2%,其他营养型真菌的相对丰度总和分别为4.6%和4.9%。【结论】马铃薯根际土壤真菌优势类群在2种轮作模式下保持稳定,推测是马铃薯根际土壤真菌群落的核心类群,对维持马铃薯健康生长具有重要意义。旱地轮作模式可能更有利于根际土壤中病原营养型真菌的富集,发病马铃薯可能更有利于根际土壤中腐生营养型真菌生长,导致土壤微生态平衡被破坏,及时清理发病植株残体可加快恢复土壤健康。
    Abstract: 【Objective】The purpose of this study was to reveal the distribution features of fungi in potato rhizosphere soil when bacterial disease occurred or not in paddy-upland rotation mode and upland rotation mode, respectively, so as to provide reference for soil health management and sustainable potato production.【Method】The rhizosphere soil samples of healthy potato plants/plants with bacterial disease were collected in upland rotation and paddy-upland rotation modes, respectively. The rhizosphere soil samples of healthy potato plants in upland rotation and paddy-upland rotation were labeled as HD.J and SH.J, respectively, and those of plants with bacterial disease in upland rotation and paddy-upland rotation were labeled as HD.B and SH.B, respectively. Using Illumina high-throughput sequencing platform, the fungal ribosomal DNA internal transcribed spacer 1(ITS1) was analyzed to compare the distribution characteristics of fungal communities in rhizosphere soil in two rotation modes.【Result】The composition and diversity of fungal community in rhizosphere soil of healthy potato plants were similar in the two rotation patterns. Principal coordinate analysis also showed that the distance between the fungal community structure of HD.J and SH.J was close. For known phyla of HD.J and SH.J, Ascomycota and Basidiomycota were the dominant phyla. Among the known fungal communities, the relative abundance of Ascomycota was 33.0% and 30.0%, and that of Basidiomycota was 3.8% and 9.6% in HD.J and SH.J, respectively. The phyla of HD.J and SH.J were mainly unknown fungi, accounting for 63.0% and 60.0%, respectively. Hypocreales, Helotiales, Pleosporales and Sordariales belonging to Ascomycota and Agaricales belonging to Basidiomycota were the common dominant orders of both HD.J and SH.J, which might be the core group of potato rhizosphere soil fungal community. When potato bacterial disease occurred, the fungal community Alpha-diversity of the two rotation patterns was HD.B>SH.J>HD. J>SH.B. The relative abundances of Basidiomycota of HD.B and SH.B were higher than those of HD.J and SH.J. Among them, the abundance of Geastrales was up to 82.8% in SH.B while the abundance of Tremellales was 18.6% in HD.B. Two dominant genera in HD.B were Verticillium, which could cause Verticillium wilt of potato, and Nakataea, which could cause sclerotinia and stalk rot of rice, with abundance of 6.8% and 5.9% respectively. Using FUNGuild database for prediction of fungal trophic modes, comparing that there was only one trophic mode, pathotroph, was dominant in HD.J (20.6% relative abundance), there were dominant modes, pathotroph, saprotroph, and pathotroph-saprotroph-symbiotroph in HD.B(with 15.4%, 18.8% and 21.4% of relative abundance, respectively). The relative abundances of saprotroph in SH.J and SH.B were 28.2% and 10.2%, respectively, and the total abundances of other trophic modes were 4.6% and 4.9%.【Conclusion】The dominant fungal populations in potato rhizosphere soil in the two rotation patterns remain stable, which suggests that they may be the core group of rhizosphere fungi and they are of great significance to maintain the healthy growth of potato. Upland rotation mode may be more conducive to the accumulation of pathotroph fungi. Diseased potato may be more conducive to the accumulation of saprotroph fungi. It is important to remove diseased plant residues in time in order to restore the microecosystem balance of soil.
  • 陈爱昌,魏周全,马永强,邓成贵.2013.甘肃省马铃薯黄萎病病原分离与鉴定[J].植物病理学报,43(4):418-420.doi:10.13926/j.cnki.apps.2013.04.012.[Chen A C,Wei Z Q,Ma Y Q,Deng C G.2013.Isolation and identification of the pathogens causing Potato Verticillium wilt in Gansu[J].Acta Phytopathologica Sinica,43(4):418-420.]
    杜叶红,胡美华,叶飞华.2019.水旱轮作对土壤性状及大棚瓜菜生产的影响[J].浙江农业科学,60(5):774-775.doi:10.16178/j.issn.0528-9017.20190530.[Du Y H,Hu MH,Ye F H.2019.Effects of water and drought rotation on soil properties and greenhouse melon and vegetable production[J].Zhejiang Agricultural Sciences,60(5):774-775.]
    顾松松,熊兴耀,谭琳,胡新喜,汤心砚,程予奇,胡秋龙.2018.土壤微生态与马铃薯连作障碍机制的研究进展[J].中国农学通报,34(30):42-45.[Gu S S,Xiong X Y,Tan L,Hu X X,Tang X Y,Cheng Y Q,Hu Q L.2018.Soil microorganisms and the mechanism of potato continuous cropping obstacle:Research progress[J].Chinese Agricultural Science Bulletin,34(30):42-45.]
    李继平,李敏权,惠娜娜,王立,马永强,漆永红.2013.马铃薯连作田土壤中主要病原真菌的种群动态变化规律[J].草业学报,22(4):147-152.doi:10.11686/cyxb20130418.[Li J P,Li M Q,Hui N N,Wang L,Ma Y Q,Qi Y H.2013.Population dynamics of main fungal pathogens in soil of continuously cropped potato[J].Acta Prataculturae Sinica,22(4):147-152.]
    马得祯,郭晓冬,谭雪莲,郭天文.2016.马铃薯连作对根际土壤微生物生理类群的影响[J].甘肃农业大学学报,51(2):35-39.doi:10.13432/j.cnki.jgsau.2016.02.007.[Ma D Z,Guo X D,Tan X L,Guo T W.2016.Effect of potato continuous cropping on rhizosphere soil microbial physiological colony[J].Journal of Gansu Agricultural University,51(2):35-39.]
    马玲,马琨,杨桂丽,牛红霞,代晓华.2015.马铃薯连作栽培对土壤微生物多样性的影响[J].中国生态农业学报,23(5):589-596.doi:10.13930/j.cnki.cjea.140888.[Ma L,Ma K,Yang G L,Niu H X,Dai X H.2015.Effects of continuous potato cropping on the diversity of soil microorganisms[J].Chinese Journal of Eco-Agriculture,23(5):589-596.]
    孟品品,刘星,邱慧珍,张文明,张春红,王蒂,张俊莲,沈其荣.2012.连作马铃薯根际土壤真菌种群结构及其生物效应[J].应用生态学报,23(11):3079-3086.doi:10.13287/j.1001-9332.2012.0464.[Meng P P,Liu X,Qiu HZ,Zhang W M,Zhang C H,Wang D,Zhang J L,Shen QR.2012.Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato[J].Chinese Journal of Applied Ecology,23(11):3079-3086.]
    秦越,马琨,刘萍.2015.马铃薯连作栽培对土壤微生物多样性的影响[J].中国生态农业学报,23(2):225-232.doi:10.13930/j.cnki.cjea.140755.[Qin Y,Ma K,Liu P.2015.Effect of potato continuous cropping on genetic diversity of soil microorganisms[J].Chinese Journal of Eco-Agriculture,23(2):225-232.]
    宋佳承,王天,闫士朋,张俊莲,沈宝云,李朝周.2020.不同种植模式对土壤质量及马铃薯生长的影响[J].土壤学报,57(2):234-243.doi:10.11766/trxb201902250026.[Song J C,Wang T,Yan S P,Zhang J L,Shen B Y,Li C Z.2020.Influences of planting pattern on soil quality and potato growth[J].Acta pedologica sinica,57(2):234-243.]
    苏婷,韩海亮,赵福成,王桂跃.2016.水田、旱地与水旱轮作种植方式土壤微生物群落的差异[J].浙江农业科学,57(2):261-262.doi:10.16178/j.issn.0528-9017.20160238.[Su T,Han H L,Zhao F C,Wang G Y.2016.Differences of soil microbial communities among paddy field,dry land and paddy upland rotation[J].Zhejiang Agricultural Sciences,57(2):261-262.]
    苏燕,李婕,曹雪颖,莫宛,郑虚,姚姿婷,邹承武.2020.水旱轮作模式下马铃薯根际土壤细菌群落多样性分析[J].南方农业学报,51(10):2336-2344.doi:10.3969/j.issn.2095-1191.2020.10.004.[Su Y,Li J,Cao X Y,Mo W,Zheng X,Yao Z T,Zou C W.2020.Diversity analysis of bacterial community in potato rhizosphere soil under the mode of paddy-upland rotation[J].Journal of Southern Agriculture,51(10):2336-2344.]
    佟立纯,贾兰.2010.水稻菌核秆腐病的发生与防治[J].新农业,(10):26.doi:10.3969/j.issn.1002-4298.2010.10.015.[Tong L C,Jia L.2010.Occurrence and control of rice sclerotium stalk rot[J].Modern Agriculture,(10):26.]
    王克磊,周友和,黄宗安,朱隆静,徐坚.2017.水旱轮作对土壤性状及作物产量的影响[J].蔬菜,(5):21-23.doi:10.3969/j.issn.1001-8336.2017.05.010.[Wang K L,Zhou Y H,Huang Z A,Zhu L J,Xu J.2017.Effects of paddyupland rotation on the characteristics of soils and crop yields[J].Vegetables,(5):21-23.]
    王丽红,郭晓冬,谭雪莲,郭天文.2016.不同轮作方式对马铃薯土壤酶活性及微生物数量的影响[J].干旱地区农业研究,34(5):109-113.doi:10.7606/j.issn.1000-7601.2016.05.17.[Wang L H,Guo X D,Tan X L,Guo T W.2016.Effects of different crop rotations on enzyme activities and microbial quantities in potato soil[J].Agricultural Research in the Arid Area,34(5):109-113.]
    武超,刘贤文,张炜,王琼,郭华春.2020.马铃薯不同品种(系)和稻、薯轮作模式对根结线虫病的防治效果[J].作物学报,46(9):1456-1463.doi:10.3724/sp.j.1006.2020.94191.[Wu C,Liu X W,Zhang W,Wang Q,Guo H C.2020.Control effects of different potato varieties(lines)and rice-potato rotation system on root-knot nematode[J].Acta Agronomica Sinica,46(9):1456-1463.]
    赵章平,要凯,康益晨,张卫娜,范艳玲,杨昕宇,张俊莲,秦舒浩.2020.沟垄覆膜栽培对连作马铃薯根系分泌物和土壤养分的影响[J].甘肃农业大学学报,55(2):83-89.doi:10.13432/j.cnki.jgsau.2020.02.012.[Zhao Z P,Yao K,Kang Y C,Zhang W N,Fan Y L,Yang X Y,Zhang JL,Qin S H.2020.Effects of film mulch and ridge-furrow potato planting on root exudates and soil nutrients under continuous cropping[J].Journal of Gansu Agricultural University,55(2):83-89.]

    Berlemont R,Allison S D,Weihe C,Lu Y,Brodie E L,Martiny J B H,Martiny A C.2014.Cellulolytic potential under environmental changes in microbial communities from grassland litter[J].Frontiers in Microbiology,5(639):639.doi: 10.3389/fmicb.2014.00639.

    Berendsen R L,Pieterse C M J,Bakker P A H M.2012.The rhizosphere microbiome and plant health[J].Trends in Plant Science,17(8):478-486.doi: 10.1016/j.tplants.2012.04.001.

    Chen Z M,Wang Q,Ma J W,Zou P,Yu Q G,Jiang L.2020.Fungal community composition change and heavy metal accumulation in response to the long-term application of anaerobically digested slurry in a paddy soil[J].Ecotoxicology and Environmental Safety,196:e110453.doi: 10.1016/j.ecoenv.2020.110453.

    Cúcio C,Engelen A H,Costa R,Muyzer G.2016.Rhizosphere microbiomes of european seagrasses are selected by the plant,but are not species specific[J].Frontiers in Microbiology,7(9):440.doi: 10.3389/fmicb.2016.00440.

    Huang X F,Chaparro J M,Reardon K F,Zhang R F,Shen QR,Vivanco J M.2014.Rhizosphere interactions:Root exudates,microbes,and microbial communities[J].Botanybotanique,92(92):281-289.doi: 10.1139/cjb-2013-0225.

    Jansson J K,Hofmockel K S.2020.Soil microbiomes and climate change[J].Nature Reviews Microbiology,18(1):35-46.doi: 10.1038/s41579-019-0265-7.

    Lundberg D S,Lebeis S L,Paredes S H,Yourstone S,Gehring J,Malfatti S,Tremblay J,Engelbrektson A,Kunin V,Rio T G D.2012.Defining the core Arabidopsis thaliana root microbiome[J].Nature,488(7409):86.doi: 10.1038/nature11237.

    Mao L T,Chen Z G,Xu L X,Zhang H J,Lin Y W.2019.Rhizosphere microbiota compositional changes reflect potato blackleg disease[J].Applied Soil Ecology,140:11-17.doi: 10.1016/j.apsoil.2019.03.024.

    Philippot L,Raaijmakers J M,Lemanceau P,van der Putten W H.2013.Going back to the roots:The microbial ecology of the rhizosphere[J].Nature Reviews Microbiology,11(11):789-799.doi: 10.1038/nrmicro3109.

    Qin S H,Stephen Y,Xu X X,Liu Y H,Yu B.2017.Analysis on fungal diversity in rhizosphere soil of continuous cropping potato subjected to different furrow-ridge mulching managements[J].Frontiers in Microbiology,8:85.doi: 10.3389/fmicb.2017.00845.

    Ye J H,Cheng J,Ren Y H,Liao W L,Li Q.2020.The first mitochondrial genome for geastrales(Sphaerobolus stellatus) reveals intron dynamics and large-scale gene rearrangements of basidiomycota[J].Frontiers in Microbiology,11:1970.doi: 10.3389/fmicb.2020.01970.

    Zhao J,Zhang D,Yang Y Q,Pan Y,Yang Z M,Zhu J H,Zhang L K,Yang Z H.2020.Dissecting the effect of continuous cropping of potato on soil bacterial communities as revealed by high-throughput sequencing[J].PLo SOne,155:e0233356.doi: 10.1371/journal.pone.0233356.

计量
  • 文章访问数:  399
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 刊出日期:  2021-05-29

目录

    /

    返回文章
    返回